Computing sparse multiples of polynomials

Loading...
Thumbnail Image

Date

2010-08-31T20:09:32Z

Authors

Tilak, Hrushikesh

Advisor

Journal Title

Journal ISSN

Volume Title

Publisher

University of Waterloo

Abstract

We consider the problem of finding a sparse multiple of a polynomial. Given a polynomial f ∈ F[x] of degree d over a field F, and a desired sparsity t = O(1), our goal is to determine if there exists a multiple h ∈ F[x] of f such that h has at most t non-zero terms, and if so, to find such an h. When F = Q, we give a polynomial-time algorithm in d and the size of coefficients in h. For finding binomial multiples we prove a polynomial bound on the degree of the least degree binomial multiple independent of coefficient size. When F is a finite field, we show that the problem is at least as hard as determining the multiplicative order of elements in an extension field of F (a problem thought to have complexity similar to that of factoring integers), and this lower bound is tight when t = 2.

Description

Keywords

complexity, polynomial, sparse, multiple, algorithm, lowerbound

LC Subject Headings

Citation