UWSpace is currently experiencing technical difficulties resulting from its recent migration to a new version of its software. These technical issues are not affecting the submission and browse features of the site. UWaterloo community members may continue submitting items to UWSpace. We apologize for the inconvenience, and are actively working to resolve these technical issues.
 

A Grouped Hamming Network

Loading...
Thumbnail Image

Date

2010-08-30T17:46:22Z

Authors

Logan, Bryan

Journal Title

Journal ISSN

Volume Title

Publisher

University of Waterloo

Abstract

A distributed hash table (DHT) is a type of peer-to-peer (P2P) network that, like traditional hash tables, maps keys to values. Unlike traditional hash tables, however, the data is distributed across a network with each node being responsible for a particular range of keys. Numerous other DHTs have been presented and have become the cornerstone of wildly popular P2P file-sharing applications, such as BitTorrent. Each of these DHTs trades-off the number of pointers maintained per node with the overhead and lookup time; storing more pointers decreases the lookup time at the expense of increased overhead. A Grouped Hamming Network (GHN), the overlay network presented in this thesis, allows for the number of pointers per node to be any increasing function of n, P(n) = Ω(log n). The system presented assumes that nodes fail independently and uniformly at random with some probability q = 1 − p. Three different schemes for routing in a GHN are presented. For each routing scheme a theoretical estimate on the probability of failure is given and optimal configurations in terms of n and P(n) are given. Simulations of GHNs with various configurations indicate that the given estimates are indeed accurate for reasonable values of q and that the optimal configurations are accurate.

Description

Keywords

distributed hash table, hamming network, hypercube

LC Keywords

Citation