Show simple item record

dc.contributor.authorAdams, Elspeth 14:32:21 (GMT) 14:32:21 (GMT)
dc.description.abstractThe continuous facility layout problem consists of arranging a set of facilities so that no pair overlaps and the total sum of the pairwise connection costs (proportional to the center-to-center rectilinear distance) is minimized. This thesis presents a completely mixed integer semidefinite programming (MISDP) model for the continuous facility layout problem. To begin we describe the problem in detail; discuss the conditions required for a feasible layout; and define quaternary variables. These variables are the basis of the MISDP model. We prove that the model is an exact formulation and a distinction is made between the constraints that semidefinite programming (SDP) optimization software can solve and those that must be relaxed. The latter are called exactness constraints and three possible exactness constraints are shown to be equivalent. The main contribution of this thesis is the theoretical development of a MISDP model that is based on quaternary, as oppose to binary, variables; nevertheless preliminary computational results will be presented for problems with 5 to 20 facilities. The optimal solution is found for problems with 5 and 6 facilities, confirming the validity of the model; and the potential of the model is revealed as a new upper bound is found for an 11-facility problem.en
dc.publisherUniversity of Waterlooen
dc.subjectFacility Layout Problemen
dc.subjectSemidefinite Programmingen
dc.titleA Semidefinite Programming Model for the Facility Layout Problemen
dc.typeMaster Thesisen
dc.subject.programManagement Sciencesen Sciencesen
uws-etd.degreeMaster of Applied Scienceen

Files in this item


This item appears in the following Collection(s)

Show simple item record


University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages