Show simple item record

dc.contributor.authorKothari, Robin 15:23:40 (GMT) 15:23:40 (GMT)
dc.description.abstractThe problem considered in this thesis is the following: We are given a Hamiltonian H and time t, and our goal is to approximately implement the unitary operator e^{-iHt} with an efficient quantum algorithm. We present an efficient algorithm for simulating sparse Hamiltonians. In terms of the maximum degree d and dimension N of the space on which the Hamiltonian acts, this algorithm uses (d^2(d+log^* N)||Ht||)^{1+o(1)} queries. This improves the complexity of the sparse Hamiltonian simulation algorithm of Berry, Ahokas, Cleve, and Sanders, which scales like (d^4(log^* N)||Ht||)^{1+o(1)}. In terms of the parameter t, these algorithms are essentially optimal due to a no--fast-forwarding theorem. In the second part of this thesis, we consider non-sparse Hamiltonians and show significant limitations on their simulation. We generalize the no--fast-forwarding theorem to dense Hamiltonians, and rule out generic simulations taking time o(||Ht||), even though ||H|| is not a unique measure of the size of a dense Hamiltonian H. We also present a stronger limitation ruling out the possibility of generic simulations taking time poly(||Ht||,log N), showing that known simulations based on discrete-time quantum walks cannot be dramatically improved in general. We also show some positive results about simulating structured Hamiltonians efficiently.en
dc.publisherUniversity of Waterlooen
dc.subjectQuantum algorithmsen
dc.subjectHamiltonian simulationen
dc.titleEfficient simulation of Hamiltoniansen
dc.typeMaster Thesisen
dc.subject.programComputer Scienceen of Computer Scienceen
uws-etd.degreeMaster of Mathematicsen

Files in this item


This item appears in the following Collection(s)

Show simple item record


University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages