Approximation Algorithms for (S,T)-Connectivity Problems
Loading...
Date
2010-08-03T18:41:07Z
Authors
Laekhanukit, Bundit
Advisor
Journal Title
Journal ISSN
Volume Title
Publisher
University of Waterloo
Abstract
We study a directed network design problem called the $k$-$(S,T)$-connectivity problem; we design and analyze approximation
algorithms and give hardness results. For each positive integer $k$, the minimum cost $k$-vertex connected spanning subgraph problem is a special case of the $k$-$(S,T)$-connectivity problem. We defer
precise statements of the problem and of our results to the introduction.
For $k=1$, we call the problem the $(S,T)$-connectivity problem. We study three variants of the problem: the standard
$(S,T)$-connectivity problem, the relaxed $(S,T)$-connectivity problem, and the unrestricted $(S,T)$-connectivity problem. We give hardness results for these three variants. We design a $2$-approximation algorithm for the standard $(S,T)$-connectivity problem. We design tight approximation algorithms for the relaxed $(S,T)$-connectivity problem and one of its special cases.
For any $k$, we give an $O(\log k\log n)$-approximation algorithm,
where $n$ denotes the number of vertices. The approximation guarantee
almost matches the best approximation guarantee known for the minimum
cost $k$-vertex connected spanning subgraph problem which is $O(\log
k\log\frac{n}{n-k})$ due to Nutov in 2009.
Description
Keywords
algorithm, approximation algorithm, connectivity, directed graph