Show simple item record

dc.contributor.authorManeshi, Abolfazl
dc.date.accessioned2010-05-20 16:49:47 (GMT)
dc.date.available2010-05-20 16:49:47 (GMT)
dc.date.issued2010-05-20T16:49:47Z
dc.date.submitted2010
dc.identifier.urihttp://hdl.handle.net/10012/5212
dc.description.abstractIn-situ polymerization is one of the most efficient methods for production of polymer clay nanocomposites. In-situ polymerization of olefins using coordination catalysts is a type of heterogeneous polymerization. In order to achieve acceptable clay nanolayer dispersion in the polyolefin matrix, the clay layer exfoliation and particle break up during the polymerization are essential requirements. A literature review on polyolefin/clay nanocomposite is given in Chapter 2. In Chapter 3, we present a new mathematical model, which is as an extension of the multigrain model (MGM), to describe the intercalative polymerization and expansion of clay interlayer spaces during polymerization using clay-supported metallocenes. The results from the model show that, under the studied conditions, mass transfer is not a strong factor controlling clay exfoliation and particle break up. If the polymerization active sites are supported uniformly on all clay surfaces, effective exfoliation will be achieved after a relative short polymerization time. In practice, obtaining good dispersion of clay nanolayers with uniform properties requires that the active sites be exclusively located on the clay nanolayer surfaces, and not extracted by the solvent to form a homogeneous solution. Factors favouring active site extraction would result in nanocomposites with poor properties. In addition, high polymerization activities, stable polymerization runs, and ease of supporting are other criteria for a successful in-situ polymerization. For this purpose we established a catalyst supporting method by which most of these requirements were met. In this method, the water content on the clay surface, which is considered as poison for the metallocene catalyst, was used to produce MAO upon reaction with trimethylaluminum (TMA). Using this method, polymerization was highly active in absence of MAO cocatalyst, knowing that MAO cocatalyst promotes active site extraction from the clay surface and results in poor powder morphology. Chapter 4 describes the development of this supporting methodology. Chapter 4 also investigates the effect of the organic modification type existing on the clay surface on the success of catalyst supporting and in-situ polymerization. We found that using the proposed supporting procedure, only tertiary ammonium type modification enhanced the in-situ polymerization, whereas the quaternary ammonium worsened the catalyst supporting efficiency and led to catalyst with poor or no polymerization activity. It is suggested that, in addition to enhancing clay surface-organic solvent compatibility (which facilitates catalyst supporting), the tertiary ammonium cation reacts with the in-situ produced MAO and increases the stability of the cocatalyst bonded to the clay surface. The effect of different polymerization conditions on the polymerization behavior and nanocomposite structural properties, such as catalyst loading during supporting, polymerization temperature and triisobutylaluminum (TIBA) concentration, were studied in Chapter 5. It was found that TIBA acts merely as scavenger. High polymerization activities were obtained with low Al/Zr ratios (Al from TIBA) and increased Al concentration decreased the polymerization activity and also the quality of powder morphology. Catalyst loading in the supporting step showed to have an important role in determining the final properties. The clay particles with higher catalyst loading resulted in better exfoliation and powder morphologies The effect of solvent type during catalyst supporting and polymerization was studied in Chapter 6. It was shown that catalyst supporting in n-hexane resulted in polymerizations with higher activities and polymers with higher molecular weight were produced. Polymerization with catalyst supported in hexane showed different ethylene uptake profiles, suggesting different mechanism of exfoliation. It is suggested that using this catalyst, the clay is mostly exfoliated before polymerization started. Similar to the original clay, the catalyst supporting efficiency on the organically modified clay was close to 100 percent. However, comparing the polymerization activities of these catalysts to those that were supported directly in the reactor just before the polymerization (in-reactor, or in-situ, supported catalysts) shows that a considerable fraction of the active sites are deactivated during the prolonged contact between catalyst and clay support surface. In Chapter 5, it was shown that the in-reactor supported catalyst had considerably higher polymerization activities, up to 40 percent of that of the homogeneous catalyst. Nanocomposites made with in-reactor supported catalysts had powder morphology and nanaolayer dispersion comparable to those made with clay-supported catalysts.en
dc.language.isoenen
dc.publisherUniversity of Waterlooen
dc.subjectIn-situ Polymerizationen
dc.subjectEthyleneen
dc.subjectClayen
dc.subjectOrganically Modifieden
dc.subjectExfoliationen
dc.subjectParticle Break upen
dc.subjectScanning electron microscopy (SEM)en
dc.subjectModelen
dc.subjectIntercalationen
dc.subjectTransmission electron microscopy (TEM)en
dc.subjectMorphologyen
dc.subjectNanocompositeen
dc.subjectActivityen
dc.subjectMetallocene Catalysten
dc.subjectSupportingen
dc.subjectXRDen
dc.subjectCloisite 93Aen
dc.subjectCloisiteen
dc.subjectTertiary ammoniumen
dc.subjectModelen
dc.subjectICPen
dc.subjectWater Contenten
dc.subjectCompatilbilityen
dc.subjectSolventen
dc.titleIn-Situ Ethylene Polymerization with Organoclay-Supported Metallocenes for the Preparation of Polyethylene-Clay Nanocompositesen
dc.typeDoctoral Thesisen
dc.pendingfalseen
dc.subject.programChemical Engineeringen
uws-etd.degree.departmentChemical Engineeringen
uws-etd.degreeDoctor of Philosophyen
uws.typeOfResourceTexten
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages