Show simple item record

dc.contributor.authorWeng, Chengguo
dc.date.accessioned2009-09-30 20:29:16 (GMT)
dc.date.available2009-09-30 20:29:16 (GMT)
dc.date.issued2009-09-30T20:29:16Z
dc.date.submitted2009-09
dc.identifier.urihttp://hdl.handle.net/10012/4766
dc.description.abstractThe research on optimal reinsurance design dated back to the 1960’s. For nearly half a century, the quest for optimal reinsurance designs has remained a fascinating subject, drawing significant interests from both academicians and practitioners. Its fascination lies in its potential as an effective risk management tool for the insurers. There are many ways of formulating the optimal design of reinsurance, depending on the chosen objective and constraints. In this thesis, we address the problem of optimal reinsurance designs from an insurer’s perspective. For an insurer, an appropriate use of the reinsurance helps to reduce the adverse risk exposure and improve the overall viability of the underlying business. On the other hand, reinsurance incurs additional cost to the insurer in the form of reinsurance premium. This implies a classical risk and reward tradeoff faced by the insurer. The primary objective of the thesis is to develop theoretically sound and yet practical solution in the quest for optimal reinsurance designs. In order to achieve such an objective, this thesis is divided into two parts. In the first part, a number of reinsurance models are developed and their optimal reinsurance treaties are derived explicitly. This part focuses on the risk measure minimization reinsurance models and discusses the optimal reinsurance treaties by exploiting two of the most common risk measures known as the Value-at-Risk (VaR) and the Conditional Tail Expectation (CTE). Some additional important economic factors such as the reinsurance premium budget, the insurer’s profitability are also considered. The second part proposes an innovative method in formulating the reinsurance models, which we refer as the empirical approach since it exploits explicitly the insurer’s empirical loss data. The empirical approach has the advantage that it is practical and intuitively appealing. This approach is motivated by the difficulty that the reinsurance models are often infinite dimensional optimization problems and hence the explicit solutions are achievable only in some special cases. The empirical approach effectively reformulates the optimal reinsurance problem into a finite dimensional optimization problem. Furthermore, we demonstrate that the second-order conic programming can be used to obtain the optimal solutions for a wide range of reinsurance models formulated by the empirical approach.en
dc.language.isoenen
dc.publisherUniversity of Waterlooen
dc.subjectoptimal reinsuranceen
dc.subjectrisk measureen
dc.subjectValue at Risken
dc.subjectConditional Tail Expectationen
dc.subjectempirical approachen
dc.subjectconvex optimizationen
dc.subjectLagrangian methoden
dc.subjectsecond order conic programmingen
dc.titleOptimal Reinsurance Designs: from an Insurer’s Perspectiveen
dc.typeDoctoral Thesisen
dc.comment.hiddenDear submission review, The deadline for me to submit my thesis usefully is October 1st. Otherwise, I need to pay the tuition for the term Fall 2009. As the deadline is approaching, I will be very grateful if you could let me know my submission result as soon as possible. Thank you in advance. Best Regards, Chengguo Wengen
dc.pendingfalseen
dc.subject.programActuarial Scienceen
uws-etd.degree.departmentStatistics and Actuarial Scienceen
uws-etd.degreeDoctor of Philosophyen
uws.typeOfResourceTexten
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages