Show simple item record

dc.contributor.authorDuench, Stephanie Ann
dc.date.accessioned2009-04-29 15:53:46 (GMT)
dc.date.available2009-04-29 15:53:46 (GMT)
dc.date.issued2009-04-29T15:53:46Z
dc.date.submitted2009-03-17
dc.identifier.urihttp://hdl.handle.net/10012/4351
dc.description.abstractIntroduction The ocular surface provides a unique opportunity to study hemodynamics since the vessels can be visualized directly, without treatment and non-invasively. The availability of instruments to measure various hemodynamic parameters on the ocular surface in an objective manner are lacking. The quantification of red blood cell velocity, blood oxygen saturation and conjunctival redness on the ocular surface using novel, validated techniques has the potential of providing useful information about vascular physiology. The specific aims of each chapter are as follows: Chapter 3: The objective was to design, develop and validate a system that would non-invasively quantify the red blood cell velocity in the conjunctival vessels. A tool was developed to automatically analyze video sequences of conjunctival vessels, digitally imaged with high enough magnification to resolve movement of the blood within the vessel. Chapter 4: The objective was to: a) design and develop a method in order to non-invasively quantify the changes in blood oxygen saturation (SO2) in the conjunctival vessels and demonstrate reliability of the measures and, b) demonstrate the application of the method by showing a response to an isocapnic hyperoxic provocation and compare those values to the results from a valid instrument. Chapter 5: The aim of this experiment was to examine variations in ocular redness levels, red blood cell velocities and oxygen saturation levels over time in clinically healthy participants and also to compare differences between two age groups. Chapter 6: The aim of this experiment was to examine the ocular redness levels, red blood cell velocities and oxygen saturation levels in clinically healthy participants when a topical ophthalmic decongestant was instilled onto the eye and to demonstrate the validity of the use of two novel techniques. Chapter 7: The aim of this experiment was to examine ocular redness, red blood cell velocity and oxygen saturation in participants who were habitual soft contact lens wearers (study) compared to those that did not (control) and also to compare differences in silicone (SH) and non-silicone hydrogel wearers. Methods Chapter 3: Simulations representing moving RBCs within a vessel and the random variation of each cell in terms of speed, shape and intensity were created in order to evaluate the performance of the algorithm. For each vessel, a signal that correlated to blood cell position was extracted from each frame, and the inter-frame displacement was estimated through a modified dynamic time warping (DTW) algorithm. This provided the red blood cell velocity over time in each point of the vessels. Thus, from these estimates, the mean red blood cell velocity for each vessel was easily evaluated. The true mean velocity from the simulation with the one estimated by the algorithm was compared and the system accuracy was determined. Chapter 4: a) Conjunctival vessels were imaged with two narrow-band interference filters with O2-sensitive and O2-insensitive peak transmissions using a Zeiss slit lamp at 32x magnification. Optical densities were calculated from vascular segments using the average reflected intensities inside and outside the vessels. Optical density ratios were used to calculate relative oxygen saturation values. Video images of the bulbar conjunctiva were recorded at three times of the day. Measurement repeatability was assessed over location at each time and across consecutive frames. b) Subjects initially breathed air for 10 minutes followed by pure oxygen (O2) for 20 minutes, and then air for a final 10 minute period using a sequential re-breathing circuit. Simultaneously, SO2 values measured with a pulse oximeter ear clip and finger clip were recorded. The validity of the dual wavelength method was demonstrated by comparing the values to those from the ear clip pulse oximeter. Chapter 5: Participants attended eight separate visits over the course of a day. Levels of bulbar conjunctival redness, red blood cell velocity and blood oxygen saturation were measured on a vessel of interest. Chapter 6: Participants attended three separate visits during an allotted 60 minute session. Bulbar conjunctival redness, red blood cell velocity and blood oxygen saturation were measured on a vessel of interest, pre-insertion, just after insertion and, 10 minutes after insertion of a topical ocular decongestant. Significant differences between the three measures were assessed and correlations between the three parameters were reported. Chapter 7: Participants were measured 8 times over the course of a day with their contact lenses in place. Bulbar conjunctival redness, red blood cell velocity and blood oxygen saturation were measured. Results Chapter 3: Results for the simulated videos demonstrated a very good concordance between the estimated and actual velocities supporting its validity. The mean relative error for the modified Dynamic Time Warping (DTW) method is 6%. Chapter 4: The intraclass correlations (ICCs) between the three locations at each time point were 0.93, 0.56 and 0.86 respectively. Measurements across 5 consecutive frames showed no significant difference for all subjects (ICC = 0.96). The ICCs between the two methods at each time point were 0.45, 0.10 and 0.11 respectively. a) There was no significant difference in SO2 between the three locations measured using the dual wavelength method for all subjects. There was also no significant difference between the three locations at any of the time points for the dual wavelength method. b) In response to isocapnic hyperoxic provocation using the dual wavelength method, blood oxygen saturation was increased from control values and subsequently recovered after withdrawal of hyperoxia. Blood oxygen saturation values recorded from the ear clip and finger clip of the pulse oximeter also showed an increase from control values and subsequently recovered after withdrawal of hyperoxia. SO2 comparison between the dual wavelength method and the ear-clip pulse oximeter method did not show a significant difference. The interaction between the two methods and time on SO2 was not significant. Chapter 5: From baseline, the group mean redness and oxygen saturation did not change significantly over time. There was a significant difference in the group mean red blood cell velocity values over time. There was no significant difference between age strata for all three measures. Chapter 6: After drop instillation redness values decreased significantly. There was no change in red blood cell velocity and oxygen saturation over time. There was a moderate significant correlation between SO2 and red blood cell velocity just after drop insertion. Chapter 7: When comparing the study and control groups, no significant difference in redness or SO2 over time was found. RBC velocity over time was found to be significantly different between groups. When comparing the two study groups (SH vs. hydrogel) no significant difference across either measure over time was found. Conclusions Chapter 3: Signal displacement estimation through the DTW algorithm can be used to estimate mean red blood cell velocity. Successful application of the algorithm in the estimation of RBC velocity in conjunctival vessels was demonstrated. Chapter 4: The application of the dual wavelength method was demonstrated and optical density ratios can be used in a reliable manner for relative oxygen saturation measurements. This valid method promises to enable the study of conjunctival O2 saturation under various experimental and physiological conditions. Chapter 5: The results of this study support the theory of metabolic regulation. The lack of any significant change across time for redness and oxygen saturation along with significant changes in red blood cell velocity substantiates this notion. Chapter 6: This study supports the literature regarding metabolic regulation of the microvasculature during the use of various stimuli. The results demonstrated that oxygen saturation levels remain stable even when a significant decrease in ocular redness is measured. The novel techniques used in this experiment demonstrated the expected action of the decongestant further contributing to their application and validity. Chapter 7: In summary, the participants in the study group were habitual contact lens wearers that had lower RBC velocities when compared to the control group supporting the notion that contact lenses initiate a hypoxic response. The lack of change in SO2 in either group supports the theory of metabolic regulation.en
dc.language.isoenen
dc.publisherUniversity of Waterlooen
dc.subjectBulbar conjunctivaen
dc.subjectRed blood cell velocityen
dc.titleDevelopment of Novel Techniques for Measuring Bulbar Conjunctival Red Blood Cell Velocity, Oximetry and Rednessen
dc.typeDoctoral Thesisen
dc.comment.hiddenI have RESUBMITTED a new version as I realised I did not update my table of contents field. As mentioned, Trevor wanted me to move all of my references to the end of my thesis but since I feel that would cause my thesis to be a more difficult read and there is no regulation regarding this, I prefer to leave my references at the end of each chapter. Please call me at 647-294-4404 if there are issues.en
dc.pendingfalseen
dc.subject.programVision Scienceen
uws-etd.degree.departmentSchool of Optometryen
uws-etd.degreeDoctor of Philosophyen
uws.typeOfResourceTexten
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages