Show simple item record

dc.contributor.authorTaruvinga, Kanyadzo 21:27:30 (GMT) 21:27:30 (GMT)
dc.description.abstractAt present one of the challenges of soil erosion research in South Africa is the limited information on the location of gullies. This is because traditional techniques for mapping erosion which consists of the manual digitization of gullies from air photos or satellite imagery, is limited to expert knowledge and is very time consuming and costly at a regional scale (50-10000km²). Developing a robust, reliable and accurate means of mapping gullies is a current focus for the Institute for Soil, Climate and Water Conservation (ISCW) of the Agricultural Research Council (ARC) of South Africa. The following thesis attempted to answer the question whether “medium resolution multi-spectral satellite observations, such as Landsat TM, combined with information extraction techniques, such as Vegetation Indices and multispectral classification algorithms, can provide a semi-automatic method of mapping gullies and to what level of accuracy?”. More specifically, this thesis investigated the utility of three Landsat TM-derived Vegetation Index (VI) techniques and three classification techniques based on their level of accuracy compared to traditional gully mapping methods applied to SPOT 5 panchromatic imagery at selected scales. The chosen study area was located in the province of KwaZulu-Natal (KZN) South Africa, which is considered to be the province most vulnerable to considerable levels of water erosion, mainly gully erosion. Analysis of the vegetation indices found that Normalized Difference Vegetation Index (NDVI) produced the highest accuracy for mapping gullies at the sub-catchment level while Transformed Soil Adjusted Vegetation Index (TSAVI) was successful at mapping gullies at the continuous gully level. Mapping of gullies using classification algorithms highlighted the spectral complexity of gullies and the challenges faced when trying to identify them from the surrounding areas. The Support Vector Machine (SVM) classification algorithm produced the highest accuracy for mapping gullies in all the tested scales and was the recommended approach to gully mapping using remote sensingen
dc.publisherUniversity of Waterlooen
dc.subjectRemote Sensingen
dc.subjectGully Erosionen
dc.titleGully Mapping using Remote Sensing: Case Study in Kwazulu-Natal, South Africaen
dc.typeMaster Thesisen
uws-etd.degreeMaster of Environmental Studiesen

Files in this item


This item appears in the following Collection(s)

Show simple item record


University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages