Distributed Approaches for Location Privacy

Loading...
Thumbnail Image

Date

2008-08-21T19:07:52Z

Authors

Zhong, Ge

Advisor

Journal Title

Journal ISSN

Volume Title

Publisher

University of Waterloo

Abstract

With the advance of location technologies, people can now determine their location in various ways, for instance, with GPS or based on nearby cellphone towers. These technologies have led to the introduction of location-based services, which allow people to get information relevant to their current location. Location privacy is of utmost concern for such location-based services, since knowing a person's location can reveal information about her activities or her interests. In this thesis, we first focus on location-based services that need to know only a person's location, but not her identity. We propose a solution using location cloaking based on k-anonymity, which requires neither a single trusted location broker, which is a central server that knows everybody's location, nor trust in all users of the system and that integrates nicely with existing infrastructures. We present two such protocols. The evaluation of our sample implementation demonstrates that one of the protocol is sufficiently fast to be practical, but the performance of the other protocol is not acceptable for its use in practice. In addition to the distributed k-anonymity protocol we then propose four protocols---Louis, Lester, Pierre and Wilfrid--- for a specific, identity required, location-based service: the nearby-friend application, where users (and their devices) can learn information about their friends' location if and only if their friends are actually nearby. Our solutions do not require any central trusted server or only require a semi-trusted third party that dose not learn any location information. Moreover, users of our protocol do not need to be members of the same cellphone provider, as in existing approaches. The evaluation on our implementation shows that all of the four protocols are efficient.

Description

Keywords

location privacy, cryptography, security

LC Keywords

Citation