Show simple item record

dc.contributor.authorLee, Hyun Jung 13:32:33 (GMT) 13:32:33 (GMT)
dc.description.abstractThin film transistors (TFTs), the heart of highly functional and ultra-compact active-matrix (AM) backplanes, have driven explosive growth in both the variety and utility of large-area electronics over the past few decades. Nanocrystalline silicon (nc-Si:H) TFTs have recently attracted attention as a high-performance and low-cost alternative to existing amorphous silicon (a-Si:H) and polycrystalline silicon (poly-Si) TFTs, in that they have the strong potentials which a-Si:H (low carrier mobility and poor device stability) and poly-Si (poor device uniformity and high manufacturing cost) counterparts do not have. However, the current nc-Si:H TFTs expose several challenging material and devices issues, on which the dissertation focuses. In our material study, the growth of gate-quality SiO2 films and highly conductive nc-Si:H contacts based on conventional plasma-enhanced chemical vapor deposition (PECVD) is systematically investigated, which can lead to high performance, reproducibility, predictability, and stability in the nc-Si:H TFTs. Particularly to overcome a low field effect mobility in the p-channel transistors, the possibility of B(CH3)3 as an alternative dopant source to current B2H6 is examined. The resultant p-doped nc-Si:H contacts demonstrate comparable performance to the state of the art with the maximum dark conductivity of 1.11 S/cm over 70% film crystallinity. Based on the highest-quality SiO2 and nc-Si:H contacts developed, complementary (n- and p-channel) top-gate nc-Si:H TFTs with a staggered source/drain geometry are designed, fabricated, and characterized. The n-channel TFTs demonstrate a threshold voltage VTn of 6.4 V, a field effect mobility of electrons μn of 15.54 cm2/Vs, a subthreshold slope S of 0.67 V/decade, and an on/off current ratio Ion/Ioff of 10^5, while the corresponding p-channel TFTs exhibit VTp of -26.2 V, μp of 0.24 cm2/Vs, S of 4.72 V/ decade, and Ion/Ioff of 10^4. However, the TFTs show significant non-ideal behaviors that considerably limit device performance: high leakage current in the off-state, transconductance degradation under high gate bias, and threshold voltage instability in time. Quantitative insight into each non-ideality is provided in this research. Our study on the off-state conduction in the nc-Si:H TFTs reveals that the responsible mechanism for high leakage current, particularly at a high bias regime, is largely due to Poole-Frenkel emission of trapped carriers in the reverse-biased drain depletion region. This could be effectively suppressed by proposed offset-gated structure without compromising the on-state performance. A numerical analysis of the transconductance degradation shows that the parasitic resistance components that are present in the nc-Si:H TFTs strongly degrade transconductance and thus a field effect mobility. Correspondingly, strategies for reduction in parasitic resistance of the TFT are presented. Lastly, the threshold voltage shift in the nc-Si:H TFT is attributed to the flatband voltage shift, which is mainly due to charge trapping in the PECVD SiO2 gate dielectric. Material and device study, and physical insight into non-ideal behaviors in the top-gate nc-Si:H TFTs reported in the dissertation constitute an arguably important step towards monolithic integration of pixels and peripheral driving circuits on a versatile active-matrix TFT backplane for high-performance and low-cost large-area electronics. However, the gate dielectric and the highly doped nc-Si:H contacts, still imposing considerable challenges, may require entirely new approaches.en
dc.publisherUniversity of Waterlooen
dc.subjectNanocrystalline Siliconen
dc.subjectThin Film Transistorsen
dc.titleTop-Gate Nanocrystalline Silicon Thin Film Transistorsen
dc.typeDoctoral Thesisen
dc.subject.programElectrical and Computer Engineeringen and Computer Engineeringen
uws-etd.degreeDoctor of Philosophyen

Files in this item


This item appears in the following Collection(s)

Show simple item record


University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages