Show simple item record

dc.contributor.authorRoberts, Nicholas Jason
dc.date.accessioned2008-05-27 20:57:27 (GMT)
dc.date.available2008-05-27 20:57:27 (GMT)
dc.date.issued2008-05-27T20:57:27Z
dc.date.submitted2008
dc.identifier.urihttp://hdl.handle.net/10012/3778
dc.description.abstractTwo gigantic landslides in carbonate sequences were studied through a combination of remotely sensed datasets and detailed field investigation. Field investigations supplemented the remote analysis at both sites. The work presents the first detailed documentation of the Seymareh (Saidmarreh) landslide, Zagros Mountains, Iran, which is shown to be the largest known rock avalanche in the world and the largest known landslide of any type on the Earth’s land surface. Volume of the Seymareh rock avalanche (38 Gm³) was previously underestimated by nearly 50 percent. The failure mode was complex planar sliding involving fold-related bedding-parallel shears and local break-through of bedding. The overall dip of the sliding surface was 11°. Lateral release and toe release were provided by tectonically-weakened joints and by break-out likely assisted by fluvial undercutting, respectively. Broad scar morphology and outcrop-scale features indicate the presence of nine discrete sliding surfaces distributed through the failed sequence and define nine stacked plates involved in the detachment. The Valley of the Rocks rock avalanche (1.3 Gm³), Rocky Mountains, Canada is described in detail for the first time and shown to be the largest known rock avalanche in North America as well as the largest known landslide of any type in Canada. The failure mode was simple planar sliding along a bedding-parallel, slightly concave-up surface possibly coinciding with a thrust fault (average dip 25°). Lateral release and toe release were provided by bedding-normal joints and by glacial undercutting, respectively. There is a surprisingly high degree of similarity between the two rock avalanches, despite differences in tectonic and climatic setting.. Similarities and differences between the two gigantic landslides suggest several factors important in volume determination of gigantic landslides in carbonate sequences: 1) extensive contiguous source slope; 2) high degree of structural continuity, especially across slope parallel to strike; 3) a comparatively low failure surface dip; 4) discontinuity-parallel slopes, and subsequent toe undercutting; and 5) hard-over-soft geomechanical contrasts. Comparison with magnitude-mobility relationships for landslides over five orders of magnitude shows that the Seymareh rock avalanche suggests an upper limit for landslide mobility (fahrböschung = ~4°) on the Earth’s continental surface.en
dc.language.isoenen
dc.publisherUniversity of Waterlooen
dc.subjectgigantic landslidesen
dc.subjectrock avalancheen
dc.subjectremote sensingen
dc.subjectShuttle RADAR Topographic Missionen
dc.subjectSaidmarreh landslideen
dc.subjectAsmari Limestoneen
dc.subjectPalliser Limestoneen
dc.titleStructural and geologic controls on gigantic (>1 Gm³) landslides in carbonate sequences: case studies from the Zagros Mountains, Iran and Rocky Mountains, Canadaen
dc.typeMaster Thesisen
dc.comment.hiddenI am currently living out of Province. As a result, my department’s Graduate Secretary (Sue Fisher) will be submitting the final version of the thesis for binding for me. She needs to receive the final GSO-approved pdf. from me on or before Wednesday May 21 for the binding to be completed on time (and for me to graduate on time). I realize that this require a very rapid assessment and approval by the GSO. Assistance it meeting this deadline is GREATLY appreciated. Thank you!en
dc.pendingfalseen
dc.subject.programEarth Sciencesen
uws-etd.degree.departmentEarth Sciencesen
uws-etd.degreeMaster of Scienceen
uws.typeOfResourceTexten
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages