Show simple item record

dc.contributor.authorLi, Flora
dc.date.accessioned2008-05-23 13:40:20 (GMT)
dc.date.available2008-05-23 13:40:20 (GMT)
dc.date.issued2008-05-23T13:40:20Z
dc.date.submitted2008
dc.identifier.urihttp://hdl.handle.net/10012/3745
dc.description.abstractThis thesis examines strategies to exploit existing materials and techniques to advance organic thin film transistor (OTFT) technology in device performance, device manufacture, and device integration. To enhance device performance, optimization of plasma enhanced chemical vapor deposited (PECVD) gate dielectric thin film and investigation of interface engineering methodologies are explored. To advance device manufacture, OTFT fabrication strategies are developed to enable organic circuit integration. Progress in device integration is achieved through demonstration of OTFT integration into functional circuits for applications such as active-matrix displays and radio frequency identification (RFID) tags. OTFT integration schemes featuring a tailored OTFT-compatible photolithography process and a hybrid photolithography-inkjet printing process are developed. They enable the fabrication of fully-patterned and fully-encapsulated OTFTs and circuits. Research on improving device performance of bottom-gate bottom-contact poly(3,3'''-dialkyl-quarter-thiophene) (PQT-12) OTFTs on PECVD silicon nitride (SiNx) gate dielectric leads to the following key conclusions: (a) increasing silicon content in SiNx gate dielectric leads to enhancement in field-effect mobility and on/off current ratio; (b) surface treatment of SiNx gate dielectric with a combination of O2 plasma and octyltrichlorosilane (OTS) self-assembled monolayer (SAM) delivers the best OTFT performance; (c) an optimal O2 plasma treatment duration exists for attaining highest field-effect mobility and is linked to a “turn-around” effect; and (d) surface treatment of the gold (Au) source/drain contacts by 1-octanethiol SAM limits mobility and should be omitted. There is a strong correlation between the electrical characteristics and the interfacial characteristics of OTFTs. In particular, the device mobility is influenced by the interplay of various interfacial mechanisms, including surface energy, surface roughness, and chemical composition. Finally, the collective knowledge from these investigations facilitates the integration of OTFTs into organic circuits, which is expected to contribute to the development of new generation of all-organic displays for communication devices and other pertinent applications. A major outcome of this work is that it provides an economical means for organic transistor and circuit integration, by enabling use of the well-established PECVD infrastructure, yet not compromising the performance of electronics.en
dc.language.isoenen
dc.publisherUniversity of Waterlooen
dc.subjectthin film transistoren
dc.subjectorganic semiconductoren
dc.subjectorganic electronicsen
dc.subjectflexible electronicsen
dc.subjectdevice physicsen
dc.subjectmaterial scienceen
dc.subjectsilicon nitrideen
dc.subjectinterface treatmenten
dc.subjectsilicon oxideen
dc.subjectPECVDen
dc.titleOrganic Thin Film Transistor Integrationen
dc.typeDoctoral Thesisen
dc.subject.programElectrical and Computer Engineeringen
uws-etd.degree.departmentElectrical and Computer Engineeringen
uws-etd.degreeDoctor of Philosophyen
uws.typeOfResourceTexten
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages