Show simple item record

dc.contributor.authorFarmanbar, Hamidreza
dc.date.accessioned2007-12-21 18:10:36 (GMT)
dc.date.available2007-12-21 18:10:36 (GMT)
dc.date.issued2007-12-21T18:10:36Z
dc.date.submitted2007
dc.identifier.urihttp://hdl.handle.net/10012/3458
dc.description.abstractThis work deals with communication over the AWGN channel with additive discrete interference, where the sequence of interference symbols is known causally at the transmitter. We use Shannon's treatment for channels with side information at the transmitter as a framework to derive ``optimal precoding" and ``channel code design criterion" for the channel with known interference at the transmitter. Communication over Shannon's state-dependent discrete memoryless channel where the state sequence is known causally at the transmitter requires encoding over the so-called \emph{associated} channel which has exponential input alphabet cardinality with respect to the number of states. We show that by using at most linearly many input symbols of the \emph{associated} channel, the capacity is achievable. In particular, we consider $M$-ary signal transmission over the AWGN channel with additive $Q$-ary interference where the sequence of i.i.d. interference symbols is known causally at the transmitter. We investigate the problem of maximization of the transmission rate under the uniformity constraint, where the channel input given any current interference symbol is uniformly distributed over the channel input alphabet. For this setting, we propose the general structure of a communication system with optimal precoding. We also investigate the extension of the proposed precoding scheme to continuous channel input alphabet. We also consider the problem of channel code design with causal side information at the encoder. We derive the code design criterion at high SNR by defining a new distance measure between the input symbols of the Shannon's \emph{associated} channel. For the case of the binary-input channel, i.e., $M=2$, we show that it is sufficient to use only two (out of $2^Q$) input symbols of the \emph{associated} channel in encoding as far as the distance spectrum of code is concerned. This reduces the problem of channel code design for the binary-input AWGN channel with known interference at the encoder to design of binary codes for the binary symmetric channel where the Hamming distance among codewords is the major factor in the performance of the code.en
dc.language.isoenen
dc.publisherUniversity of Waterlooen
dc.subjectside informationen
dc.subjectprecodingen
dc.titleCommunication over Channels with Causal Side Information at the Transmitteren
dc.typeDoctoral Thesisen
dc.pendingfalseen
dc.subject.programElectrical and Computer Engineeringen
uws-etd.degree.departmentElectrical and Computer Engineeringen
uws-etd.degreeDoctor of Philosophyen
uws.typeOfResourceTexten
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages