Show simple item record

dc.contributor.authorClift, Simon Sivyer
dc.date.accessioned2007-10-01 14:01:40 (GMT)
dc.date.available2007-10-01 14:01:40 (GMT)
dc.date.issued2007-10-01T14:01:40Z
dc.date.submitted2007
dc.identifier.urihttp://hdl.handle.net/10012/3385
dc.description.abstractThe evolution of the price of two financial assets may be modeled by correlated geometric Brownian motion with additional, independent, finite activity jumps. Similarly, the evolution of the price of one financial asset may be modeled by a stochastic volatility process and finite activity jumps. The value of a contingent claim, written on assets where the underlying evolves by either of these two-factor processes, is given by the solution of a linear, two-dimensional, parabolic, partial integro-differential equation (PIDE). The focus of this thesis is the development of new, efficient numerical solution approaches for these PIDE's for both linear and non-linear cases. A localization scheme approximates the initial-value problem on an infinite spatial domain by an initial-boundary value problem on a finite spatial domain. Convergence of the localization method is proved using a Green's function approach. An implicit, finite difference method discretizes the PIDE. The theoretical conditions for the stability of the discrete approximation are examined under both maximum and von Neumann analysis. Three linearly convergent, monotone variants of the approach are reviewed for the constant coefficient, two-asset case and reformulated for the non-constant coefficient, stochastic volatility case. Each monotone scheme satisfies the conditions which imply convergence to the viscosity solution of the localized PIDE. A fixed point iteration solves the discrete, algebraic equations at each time step. This iteration avoids solving a dense linear system through the use of a lagged integral evaluation. Dense matrix-vector multiplication is avoided by using an FFT method. By using Green's function analysis, von Neumann analysis and maximum analysis, the fixed point iteration is shown to be rapidly convergent under typical market parameters. Combined with a penalty iteration, the value of options with an American early exercise feature may be computed. The rapid convergence of the iteration is verified in numerical tests using European and American options with vanilla payoffs, and digital, one-touch option payoffs. These tests indicate that the localization method for the PIDE's is effective. Adaptations are developed for degenerate or extreme parameter sets. The three monotone approaches are compared by computational cost and resulting error. For the stochastic volatility case, grid rotation is found to be the preferred approach. Finally, a new algorithm is developed for the solution of option values in the non-linear case of a two-factor option where the jump parameters are known only to within a deterministic range. This case results in a Hamilton-Jacobi-Bellman style PIDE. A monotone discretization is used and a new fixed point, policy iteration developed for time step solution. Analysis proves that the new iteration is globally convergent under a mild time step restriction. Numerical tests demonstrate the overall convergence of the method and investigate the financial implications of uncertain parameters on the option value.en
dc.language.isoenen
dc.publisherUniversity of Waterlooen
dc.subjectfinancial option pricingen
dc.subjectjump diffusionen
dc.subjectmulti-factoren
dc.subjectpartial integro-differential equationen
dc.subjectmonotone methoden
dc.titleLinear and Non-linear Monotone Methods for Valuing Financial Options Under Two-Factor, Jump-Diffusion Modelsen
dc.typeDoctoral Thesisen
dc.comment.hiddenThis thesis has been previously approved.en
dc.pendingfalseen
dc.subject.programComputer Scienceen
uws-etd.degree.departmentSchool of Computer Scienceen
uws-etd.degreeDoctor of Philosophyen
uws.typeOfResourceTexten
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages