The University of Waterloo Libraries will be performing maintenance on UWSpace tomorrow, November 5th, 2025, from 10 am – 6 pm EST.
UWSpace will be offline for all UW community members during this time. Please avoid submitting items to UWSpace until November 7th, 2025.

Analysis of Asymptotic Solutions for Cusp Problems in Capillarity

Loading...
Thumbnail Image

Authors

Aoki, Yasunori

Advisor

Journal Title

Journal ISSN

Volume Title

Publisher

University of Waterloo

Abstract

The capillary surface $u(x,y)$ near a cusp region satisfies the boundary value problem: \begin{eqnarray} \nabla \cdot \frac{\nabla u}{\sqrt{1+\left|\nabla u \right|^2}}&=&\kappa u \qquad \textrm{in }\left\{(x,y): 0<x,f_2(x)<y<f_1(x)\right\}\,, \label{0.1}\\ \nu \cdot \frac{\nabla u}{\sqrt{1+\left|\nabla u \right|^2}}&=& \cos \gamma_1 \qquad \textrm{on } y=f_1(x)\,,\\ \nu \cdot \frac{\nabla u}{\sqrt{1+\left|\nabla u \right|^2}}&=& \cos \gamma_2 \qquad \textrm{on } y=f_2(x)\,, \label{0.3} \end{eqnarray} where $\lim_{x\rightarrow 0}f_1(x),f_2(x)=0$, $\lim_{x\rightarrow 0}f'_1(x),f'_2(x)=0$. It is shown that the capillary surface is unbounded at the cusp and satisfies $u(x,y)=O\left(\frac{1}{f_1(x)-f_2(x)}\right)$, even for types of cusp not investigated previously (e.g. exponential cusps). By using a tangent cylinder coordinate system, we show that the exact solution $v(x,y)$ of the boundary value problem: \begin{eqnarray} \nabla \cdot \frac{\nabla v}{\left|\nabla v \right|}&=&\kappa v \qquad \textrm{in }\left\{(x,y): 0<x,f_2(x)<y<f_1(x)\right\}\,,\\ \nu \cdot \frac{\nabla v}{\left|\nabla v \right|}&=& \cos \gamma_1 \qquad \textrm{on } y=f_1(x)\,,\\ \nu \cdot \frac{\nabla v}{\left|\nabla v \right|}&=& \cos \gamma_2 \qquad \textrm{on } y=f_2(x)\,, \end{eqnarray} exhibits sixth order asymptotic accuracy to the capillary equations~\eqref{0.1}$-$\eqref{0.3} near a circular cusp. Finally, we show that the solution is bounded and can be defined to be continuous at a symmetric cusp ($f_1(x)=-f_2(x)$) with the supplementary contact angles ($\gamma_2=\pi-\gamma_1$). Also it is shown that the solution surface is of the order $O\left(f_1(x)\right)$, and moreover, the formal asymptotic series for a symmetric circular cusp region is derived.

Description

LC Subject Headings

Citation