Show simple item record

dc.contributor.authorChiniforooshan, Ehsan Jay 13:25:25 (GMT) 13:25:25 (GMT)
dc.description.abstractIn this thesis, we introduce the intersperse coloring problem, which is a generalized version of the hypergraph coloring problem. In the intersperse coloring problem, we seek a coloring that assigns at least l different colors to each hyperedge of the input hypergraph, where l is an input parameter of the problem. We show that the notion of intersperse coloring unifies several well-known coloring problems, in addition to the conventional graph and hypergraph coloring problems, such as the strong coloring of hypergraphs, the star coloring problem, the problem of proper coloring of graph powers, the acyclic coloring problem, and the frugal coloring problem. We also provide a number of upper and lower bounds on the intersperse coloring problem on hypergraphs in the general case. The nice thing about our general bounds is that they can be applied to all the coloring problems that are special cases of the intersperse coloring problem. In this thesis, we also propose a new model for graph and hypergraph property testing, called the symmetric model. The symmetric model is the first model that can be used for developing property testing algorithms for non-uniform hypergraphs. We also prove that there exist graph properties that have efficient property testers in the symmetric model but do not have any efficient property tester in previously-known property testing models.en
dc.publisherUniversity of Waterlooen
dc.subjectGraph Coloringen
dc.titleIntersperse Coloringen
dc.typeDoctoral Thesisen
dc.subject.programComputer Scienceen of Computer Scienceen
uws-etd.degreeDoctor of Philosophyen

Files in this item


This item appears in the following Collection(s)

Show simple item record


University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages