Show simple item record

dc.contributor.authorAshoorioon, Amjad
dc.date.accessioned2007-08-29 14:23:21 (GMT)
dc.date.available2007-08-29 14:23:21 (GMT)
dc.date.issued2007-08-29T14:23:21Z
dc.date.submitted2007-08-15
dc.identifier.urihttp://hdl.handle.net/10012/3188
dc.description.abstractDuring inflation quantum fluctuations of the field driving inflation, known as inflaton, were stretched by inflationary expansion to galactic size scales or even larger. A possible implication of inflation -- if it is correct -- is that our observable universe was once of sub-Planckian size. Thus inflation could act as a magnifier to probe the short distance structure of space-time. General arguments about the quantum theory of gravity suggest that the short distance structure of space-time can be modeled as arising from some corrections to the well-known uncertainty relation between the position and momentum operators. Such modifications have been predicted by more fundamental theories such as string theory. This modified commutation relation has been implemented at the first quantized level to the theory of cosmological perturbations. In this thesis, we will show that the aforementioned scenario of implementing the minimal length to the action has an ambiguity: total time derivatives that in continuous space-time could be neglected and do not contribute to the equations of motion, cease to remain total time derivatives as we implement minimal length. Such an ambiguity opens up the possibility for trans-Planckian physics to leave an imprint on the ratio of tensor to scalar fluctuations. In near de-Sitter space, we obtain the explicit dependence of the tensor/scalar on the minimal length. Also the first consistency relation is examined in a power-law background, where it is found that despite the ambiguity that exists in choosing the action, Planck scale physics modifies the consistency relation considerably as it leads to large oscillations in the scalar spectral index in the observable range of scales. In the second part of the thesis, I demonstrate how the assumption of existence of invariant minimal length can assist us to explain the origin of cosmic magnetic fields. The third part of the thesis is dedicated to the study of signatures of M-theory Cascade inflation.en
dc.language.isoenen
dc.publisherUniversity of Waterlooen
dc.subjectInflationen
dc.subjectTrans-Planckianen
dc.subjectM-theoryen
dc.subjectString Theoryen
dc.subjectM5-Braneen
dc.subjectCosmic Magnetic Fieldsen
dc.titleSignatures of New Physics from the Primordial Universeen
dc.typeDoctoral Thesisen
dc.pendingfalseen
dc.subject.programPhysicsen
uws-etd.degree.departmentPhysics and Astronomyen
uws-etd.degreeDoctor of Philosophyen
uws.typeOfResourceTexten
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages