Lattice Compression of Polynomial Matrices

Loading...
Thumbnail Image

Authors

Li, Chao

Advisor

Journal Title

Journal ISSN

Volume Title

Publisher

University of Waterloo

Abstract

This thesis investigates lattice compression of polynomial matrices over finite fields. For an m x n matrix, the goal of lattice compression is to find an m x (m+k) matrix, for some relatively small k, such that the lattice span of two matrices are equivalent. For any m x n polynomial matrix with degree bound d, it can be compressed by multiplying by a random n x (m+k) matrix B with degree bound s. In this thesis, we prove that there is a positive probability that L(A)=L(AB) with k(s+1)=\Theta(\log(md)). This is shown to hold even when s=0 (i.e., where B is a matrix of constants). We also design a competitive probabilistic lattice compression algorithm of the Las Vegas type that has a positive probability of success on any input and requires O~(nm^{\theta-1}B(d)) field operations.

Description

LC Subject Headings

Citation