Show simple item record

dc.contributor.authorSoheilnia, Navid
dc.date.accessioned2007-04-17 14:52:35 (GMT)
dc.date.available2007-04-17 14:52:35 (GMT)
dc.date.issued2007-04-17T14:52:35Z
dc.date.submitted2007
dc.identifier.urihttp://hdl.handle.net/10012/2757
dc.description.abstractThe main focus of this work is on exploratory investigation of thermoelectric (TE) materials. Thermoelectric devices are solid-state devices that convert thermal energy from a temperature gradient into electrical energy (Seebeck effect), or convert electrical energy into a temperature gradient (Peltier effect). Modifying existing materials and finding new materials with proper thermoelectric properties are the two approaches considered in this research. Good thermoelectric materials are usually narrow band gap semiconductors with large Seebeck coefficient, reasonably high electrical conductivity and low thermal conductivity. Early transition metal antimonides and arsenides, with unique structural features were chosen for finding high performance TE materials. During the investigation of group four antimonides, a series of new ternaries, ZrSiδSb2-δ, ZrGeδSb2-δ and HfGeδSb2-δ was developed. Single crystal X-ray diffraction was used for crystal structure determination, and energy depressives X-ray analysis (EDX) was used for compositional analysis. Metallic properties of these compounds were predicted by electronic structure calculations and confirmed by physical property measurements. It was revealed that Mo3Sb7 turns semiconducting by partial Sb/Te exchange. Similarly, isostructural Re3As7 was modified to become semiconducting by partial Ge/As exchange. Crystal structures were determined by single crystal X-ray and powder X-ray diffraction utilizing Rietveld method. Electronic structures were determined by using the LMTO method and confirmed the semiconducting properties of these ternary compounds. Physical property measurements showed exceptional TE properties for these compounds. It was also confirmed by the X-ray single crystal analysis that it is possible to intercalate different cations with the proper size into the existing cubic voids of the structure. The effect of cation intercalation on physical properties of these compounds were investigated and revealed the enhancement of transport properties as a result of this intercalation.en
dc.format.extent3552979 bytes
dc.format.mimetypeapplication/pdf
dc.language.isoenen
dc.publisherUniversity of Waterlooen
dc.subjectInorganic Chemistryen
dc.subjectThermoelectric materialsen
dc.subjectSolid-State chemistryen
dc.titleThermoelectric properties of new transition metal arsenides and antimonidesen
dc.typeDoctoral Thesisen
dc.pendingfalseen
dc.subject.programChemistryen
uws-etd.degree.departmentChemistryen
uws-etd.degreeDoctor of Philosophyen
uws.typeOfResourceTexten
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages