Show simple item record

dc.contributor.authorLiu, Hongtao 19:45:16 (GMT) 19:45:16 (GMT)
dc.description.abstractThe purpose of this work was to develop a practical method for constitutive modelling of polyethylene, based on a phenomenological approach, which can be applied for structural analysis. Polyethylene (PE) is increasingly used as a structural material, for example in pipes installed by trenchless methods where relatively low stiffness of PE reduces the required installation forces, chemical inertness makes it applicable for corrosive environments, and adequate strength allows to use it for sewer, gas and water lines. Polyethylene exhibits time-dependent constitutive behaviour, which is also dependent on the applied stress level resulting in nonlinear stress-strain relationships. Nonlinear viscoelastic theory has been well established and a variety of modelling approaches have been derived from it. In order to be able to realistically utilize the nonlinear modelling approaches in design, a simple method is needed for finding the constitutive formulation for a specific polyethylene type. In this study, time-dependent constitutive relationships for polymers are investigated for polyethylene materials. Creep tests on seven polyethylene materials were conducted and the experimental results indicate strong nonlinear viscoelasticity in the material responses. Creep tests on seven materials were conducted for 24 hours for modelling purposes. However, creep tests up to fourteen days were performed on one material to study long-term creep behaviour. Multiple-stepped creep tests were also investigated. Constant rate (load and strain rate) tensile tests were conducted on two of the seven polyethylene materials. A practical approach to nonlinear viscoelastic modelling utilizing both multi-Kelvin element theory and power law functions to model creep compliance is presented. Creep tests are used to determine material parameters and models are generated for four different polyethylene materials. The corroboration of the models is achieved by comparisons with the results of different tensile creep tests, with one dimensional step loading test results and with test results from load and displacement rate loading.en
dc.format.extent6220778 bytes
dc.publisherUniversity of Waterlooen
dc.subjectConstitutive Modellingen
dc.subjectStructural Analysisen
dc.titleMaterial Modelling for Structural Analysis of Polyethyleneen
dc.typeMaster Thesisen
dc.subject.programCivil Engineeringen and Environmental Engineeringen
uws-etd.degreeMaster of Applied Scienceen

Files in this item


This item appears in the following Collection(s)

Show simple item record


University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages