UWSpace is currently experiencing technical difficulties resulting from its recent migration to a new version of its software. These technical issues are not affecting the submission and browse features of the site. UWaterloo community members may continue submitting items to UWSpace. We apologize for the inconvenience, and are actively working to resolve these technical issues.
 

Isoform-specific Roles of Prolyl-Hydroxylases in the Regulation of β-cell Insulin Secretion during Diet-Induced Obesity in Males

Loading...
Thumbnail Image

Date

2024-06-13

Authors

Jentz, Emelien

Journal Title

Journal ISSN

Volume Title

Publisher

University of Waterloo

Abstract

Type 2 diabetes affects approximately 480 million individuals worldwide and is associated with impaired tissue insulin sensitivity and β-cell dysfunction. Although there has been much research into nutrient-regulated insulin secretion and the progression to β-cell dysfunction in type 2 diabetes, the story is still incomplete. Hypoxia-inducible factor prolyl 4-hydroxylases (PHDs) are α-ketoglutarate dioxygenases commonly known to regulate hypoxia-inducible factor-1α (HIF-1α). Unique expression profiles of PHD1, PHD2 and PHD3 isozymes suggest isoform-specific roles in α-ketoglutarate-sustained insulin secretion. Our laboratory recently showed a role for β-cell PHD1 and PHD3 in insulin secretion, and previous research suggests that PHD2 may play a role in obesity-induced metabolic dysfunction. This thesis focuses on possible roles that β-cell PHDs may play in moderating the interrelationship between defective nutrient-sustained insulin secretion and obesity-induced β-cell dysfunction. We placed β-cell-specific PHD1, PHD2 or PHD3 knockout mice on a high-fat diet to explore the roles of PHD isoforms in regulating β-cell function under diet-induced obesity. β-cell-specific PHD1 knockout mice did not display any unique obesity-induced metabolic phenotypes compared to high-fat diet-fed control mice. β-cell-specific PHD3 knockout mice on the high-fat diet experienced increased weight gain compared to high-fat diet-fed control mice. However, despite increased fasting blood glucose levels, they showed no exacerbated impairments to in vivo glucose homeostasis and plasma lipid profiles. β-cell-specific PHD2 knockout mice resisted high-fat diet-induced obesity and showed improved in vivo glucose homeostasis combined with minor alterations in their plasma lipid profile. The lack of obesity-induced metabolic dysfunction in β-cell-specific PHD2 knockout mice could be explained by enhanced β-cell mass and ex vivo glucose-stimulated insulin secretion. Overall, β-cell-specific PHD2 knockout mice have ameliorated glucose homeostasis and β-cell function during obesity, potentially due to PHD2’s role in discouraging HIF-1α stability during metabolic stress.

Description

Keywords

islets, insulin secretion, prolyl hydroxylases (PHD), HIF-1α, metabolism, pancreatic β-cell, obesity, high-fat diet, type 2 diabetes, α-ketoglutarate

LC Keywords

Citation

Collections