UWSpace is currently experiencing technical difficulties resulting from its recent migration to a new version of its software. These technical issues are not affecting the submission and browse features of the site. UWaterloo community members may continue submitting items to UWSpace. We apologize for the inconvenience, and are actively working to resolve these technical issues.
 

Multivariate Triangular Quantile Maps for Novelty Detection

Loading...
Thumbnail Image

Date

2024-05-21

Authors

Wang, Jingjing

Journal Title

Journal ISSN

Volume Title

Publisher

University of Waterloo

Abstract

Novelty detection, a fundamental task in the field of machine learning, has drawn a lot of recent attention due to its wide-ranging applications and the rise of neural approaches. In this thesis, we present a general framework for neural novelty detection that centers around a multivariate extension of the univariate quantile function. Our general framework unifies and extends many classical and recent novelty detection algorithms, and opens the way to exploit recent advances in flow-based neural density estimation. We adapt the multiple gradient descent algorithm to obtain the first efficient end-to-end implementation of our framework that is free of tuning hyperparameters. Extensive experiments over a number of synthetic and real datasets confirm the efficacy of our proposed method against state-of-the-art alternatives.

Description

Keywords

novelty detection, multivariate quantile, normalizing flow

LC Keywords

Citation