Show simple item record

dc.contributor.authorAnderson, Paul
dc.date.accessioned2024-01-26 18:14:27 (GMT)
dc.date.available2024-01-26 18:14:27 (GMT)
dc.date.issued2024-01-26
dc.date.submitted2024-01-22
dc.identifier.urihttp://hdl.handle.net/10012/20304
dc.description.abstractA laser-cooled atomic ensemble confined inside a hollow-core optical fiber offers a unique platform for enhanced light-matter interactions and their applications. At the same time, transferring a cloud of laser-cooled atoms from a free space magneto-optical trap into the few-micron diameter core of the optical fiber presents a host of experimental challenges (and requires optimization of in a multidimensional parameter space). This thesis investigates loading of laser-cooled caesium atoms into a hollow-core photonic-crystal fiber, develops diagnostic methods to optimize the process and probe the atoms inside the fiber, presents initial experiments exploring the optical properties of the fiber-confined atomic ensemble, and discusses the potential uses of fiber-confined atomic ensembles in ’hybrid’ quantum repeaters that utilize quantum dots as source of entangled photon pairs. Fluorescence-based methods are also employed to estimate atom numbers and assess temperature of the atomic cloud collected initially in the magneto-optical trap and to aid in the alignment of the atom cloud with the fiber’s core. Machine learning, specifically Gaussian processes, is explored as a means to optimize experimental parameters. M-LOOP, a Python-based tool, is utilized for this purpose, demonstrating its ability to navigate around local minima. The influence of dipole beam characteristics, such as intensity and resonance, on loading efficiency is examined, considering factors like Stark shifts and trap depth. The dissertation also delves into two-photon electromagnetically induced absorption (TPEIA) with cold atomic cesium, highlighting the importance of optical depth for efficient wavelength conversion. The ladder scheme is discussed, showcasing its potential for quantum memory systems with modest delays in electromagnetically induced transparency (EIT) media. The concept of slow light under EIT conditions is presented, illustrating its utility in optical communication traffic buffering and quantum memory. We also discuss the potential uses of this platform in a quantum repeater.en
dc.language.isoenen
dc.publisherUniversity of Waterlooen
dc.subjectquantum communicationen
dc.subjecthollow-core photonic crystal fiberen
dc.subjectcold atomsen
dc.subjectmachine learningen
dc.subjectquantum dotsen
dc.titleCreating and probing laser-cooled atomic ensembles inside a hollow-core optical fibreen
dc.typeDoctoral Thesisen
dc.pendingfalse
uws-etd.degree.departmentPhysics and Astronomyen
uws-etd.degree.disciplinePhysics (Quantum Information)en
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.degreeDoctor of Philosophyen
uws-etd.embargo.terms0en
uws.contributor.advisorBajcsy, Michal
uws.contributor.affiliation1Faculty of Scienceen
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.typeOfResourceTexten
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages