Show simple item record

dc.contributor.authorLi, Haomin 18:07:10 (GMT) 18:07:10 (GMT)
dc.description.abstractThe extended gcd problem takes as input two integers, and asks as output an integer linear combination of the integers that are equal to their gcd. The classical extended Euclidean algorithm and fast variants such as the half-gcd algorithm give efficient algorithmic solutions. In this thesis, we give a fast algorithm to solve the simplest — but not trivial — extension of the scalar extended gcd problem on two integers to the case of integer input matrices. Given a full column rank (n + 1) × n integer matrix A, we present an algorithm that produces a square nonsingular integer matrix B such that the lattice generated by the rows of B — the set of all integer linear combinations of the rows of B — is equal to the lattice generated by the rows of A. The magnitude of entries in the basis B are guaranteed to be not much larger than those of the input matrix A. The cost of our algorithm to produce B is about the same as that required to multiply together two square integer matrices of dimension n and with the size of entries about that of the input matrix. This running time bound improves by about a factor of n on the fastest previously known algorithm.en
dc.publisherUniversity of Waterlooen
dc.subjectinteger matrixen
dc.subjectlattice basisen
dc.subjectexact arithmetic algorithmen
dc.subjectsymbolic computationen
dc.subjectlinear algebra algorithmen
dc.titleComputing a Basis for an Integer Latticeen
dc.typeMaster Thesisen
dc.pendingfalse R. Cheriton School of Computer Scienceen Scienceen of Waterlooen
uws-etd.degreeMaster of Mathematicsen
uws.contributor.advisorStorjohann, Arne
uws.contributor.affiliation1Faculty of Mathematicsen

Files in this item


This item appears in the following Collection(s)

Show simple item record


University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages