Show simple item record

dc.contributor.authorBaral, Ben 19:48:49 (GMT) 19:48:49 (GMT)
dc.description.abstractIn this thesis, we study the majority problem using ordered comparisons under the Las Vegas randomized algorithm model. The majority problem asks whether a given set of n elements, each with some colour, has a colour which appears on more than half of the elements. We focus on algorithms for this problem whose fundamental operation is to compare two elements, and in particular the comparison returns one of {<, =, >}. Additionally, we are interested specifically in Las Vegas randomized algorithms for this problem, which solve the problem correctly in all cases but whose running time is a random variable. Interestingly, most previous work studying this problem considers a different model where comparisons return just whether two elements are equal or not, instead of providing ordered information. Our contribution is a novel Las Vegas algorithm that uses only n + o(n) comparisons in the expectation, compared to 7n/6 + o(n) comparisons required in the expectation by the previous best algorithm for this problem.en
dc.publisherUniversity of Waterlooen
dc.subjecttheoretical computer scienceen
dc.subjectcomparison-based problemsen
dc.subjectrandomized algorithmsen
dc.titleA Las Vegas Algorithm for the Ordered Majority Problemen
dc.typeMaster Thesisen
dc.pendingfalse R. Cheriton School of Computer Scienceen Scienceen of Waterlooen
uws-etd.degreeMaster of Mathematicsen
uws.contributor.advisorMunro, J. Ian
uws.contributor.affiliation1Faculty of Mathematicsen

Files in this item


This item appears in the following Collection(s)

Show simple item record


University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages