Show simple item record

dc.contributor.authorLee, Suemin
dc.date.accessioned2022-09-09 12:21:30 (GMT)
dc.date.issued2022-09-09
dc.date.submitted2022-08-04
dc.identifier.urihttp://hdl.handle.net/10012/18726
dc.description.abstractAntimicrobial peptides (AMPs) are key molecules of the innate immune system, found among a wide variety of living organisms, including animals, plants, and humans. It is typically composed of cationic and has a unique property known as cell selectivity: It has a stronger affinity toward bacterial membranes, which contain a large fraction of anionic lipids; in contrast, the outer layer of eukaryotic cell membranes consists electrically neutral. This distinctive characteristic causes peptide selectivity toward bacterial cells over the host cells, allowing AMPs to bind and rupture bacterial membranes preferentially. Optimized AMPs are thus considered novel candidates for the next generation of antibiotics. Despite its significance, the detailed picture of how their interactions with cell membranes influence peptide selectivity still remains unclear. The work in this thesis is aimed at gaining a deeper understanding of how AMPs interact with and permeabilize cell membranes from a theoretical perspective. First, we investigate the cell-density dependence of peptide activity and selectivity. In particular, we examine how the presence of host cells is implicated in peptide activity and selectivity. Second, we explore the effects of salt ions on the interactions of AMPs with cell membranes and their impacts on peptide activity and selectivity. Last, we examine the interactions between the outer bacterial membranes, especially the lipopolysaccharide (LPS) layer, against AMPs. To this end, we view LPS molecules as forming a polymer brush grafted to a charged surface and clarify the relative significance of various factors such as brush-peptide interactions, the electrostatic interactions between peptides and LPS headgroups, and brush lengths. Through this thesis, we introduced biophysical models for describing the interactions of AMPs with cell membranes and quantified the activity and selectivity under various biologically-relevant conditions. Additional efforts related to the work carried out in this thesis will be beneficial in searching for ideal AMPs as therapeutic agents.en
dc.language.isoenen
dc.publisherUniversity of Waterlooen
dc.relation.urihttps://github.com/Suemin-Leeen
dc.titleModeling the Interactions of Antimicrobial Peptides with Cell Membranesen
dc.typeMaster Thesisen
dc.pendingfalse
uws-etd.degree.departmentPhysics and Astronomyen
uws-etd.degree.disciplinePhysicsen
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.degreeMaster of Scienceen
uws-etd.embargo.terms1 yearen
uws.contributor.advisorHa, Bae-Yeun
uws.contributor.affiliation1Faculty of Scienceen
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws-etd.embargo2023-09-09T12:21:30Z
uws.typeOfResourceTexten
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages