Show simple item record

dc.contributor.authorWhitehead, Spencer
dc.date.accessioned2022-08-05 13:06:39 (GMT)
dc.date.available2022-08-05 13:06:39 (GMT)
dc.date.issued2022-08-05
dc.date.submitted2022-07-28
dc.identifier.urihttp://hdl.handle.net/10012/18487
dc.description.abstractAnti-self-dual (ASD) instantons on R4 are connections A on SU(N)-vector bundles with finite L2-norm and curvature satisfying the ASD equation. Solutions to this non-linear partial differential equation correspond to certain algebraic data via the celebrated ADHM correspondence. While much is known about the space of instantons, it is still difficult to give explicit examples of them, aside from classes of solutions provided by certain ansatze. The perspective in this thesis is that of symmetry: by introducing a suitable notion of a nice group action on an instanton, one expects that the condition of 'equivariance with respect to the symmetry group' to reduce the number of parameters present in the ADHM equations, thus allowing for the creation of solutions not visible to existing ansatze. Through this method of symmetry, a theory of symmetric instantons is developed and applied it in particular to the case of finite-energy ASD solutions on R4 with symmetry a compact subgroup of Spin(4). This theory acts as a framework in which previous work on symmetric instantons may be realized, and in particular allows for a number of '(algebraic) integrality' results for solutions to the symmetric instanton equations. Using the equivariant index theorem the 'SU(2) restriction' ansatz used in previous work is proved to give the only non-trivial class of solutions to the symmetric instanton equations for certain symmetry subgroups of SU(2). Additionally, a question of Allen and Sutcliffe on the existence of a non-trivial instanton with symmetries of the 600-cell occurring at a charge lower than that of the JNR bound of 119 is resolved in the negative. Finally, ADHM data for two new instantons symmetric under the binary icosahedral group occurring at charges 13 and 23 are presented, as well as the software package used to generate them.en
dc.language.isoenen
dc.publisherUniversity of Waterlooen
dc.subjectgauge theoryen
dc.subjectinstantonsen
dc.subjectsymmetryen
dc.subjectADHMen
dc.titleIntegrality theorems for symmetric instantonsen
dc.typeMaster Thesisen
dc.pendingfalse
uws-etd.degree.departmentPure Mathematicsen
uws-etd.degree.disciplinePure Mathematicsen
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.degreeMaster of Mathematicsen
uws-etd.embargo.terms0en
uws.contributor.advisorCharbonneau, Benoit
uws.contributor.affiliation1Faculty of Mathematicsen
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.typeOfResourceTexten
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages