Novel Paradigms in Physics-Based Animation: Pointwise Divergence-Free Fluid Advection and Mixed-Dimensional Elastic Object Simulation

Loading...
Thumbnail Image

Date

2021-10-01

Authors

Chang, Jumyung

Advisor

Batty, Christopher, (Assistant professor)

Journal Title

Journal ISSN

Volume Title

Publisher

University of Waterloo

Abstract

This thesis explores important but so far less studied aspects of physics-based animation: a simulation method for mixed-dimensional and/or non-manifold elastic objects, and a pointwise divergence-free velocity interpolation method applied to fluid simulation. Considering the popularity of single-type models e.g., hair, cloths, soft bodies, etc., in deformable body simulations, more complicated coupled models have gained less attention in graphics research, despite their relative ubiquity in daily life. This thesis presents a unified method to simulate such models: elastic bodies consisting of mixed-dimensional components represented with potentially non-manifold simplicial meshes. Building on well-known simplicial rod, shell, and solid models, this thesis categorizes and defines a comprehensive palette expressing all possible constraints and elastic energies for stiff and flexible connections between the 1D, 2D, and 3D components of a single conforming simplicial mesh. For fluid animation, this thesis proposes a novel methodology to enhance grid-based fluid animation with pointwise divergence-free velocity interpolation. Unlike previous methods which interpolate discrete velocity values directly for advection, this thesis proposes using intermediate steps involving vector potentials: first build a discrete vector potential field, interpolate these values to form a pointwise potential, and apply the continuous curl to recover a pointwise divergence-free flow field. Particles under these pointwise divergence-free flows exhibit significantly better particle distributions than divergent flows over time. To accelerate the use of vector potentials, this thesis proposes an efficient method that provides boundary-satisfying and smooth discrete potential fields on uniform and cut-cell grids. This thesis also introduces an improved ramping strategy for the “Curl-Noise” method of Bridson et al. (2007), which enforces exact no-normal-flow on the exterior domain boundaries and solid surfaces. The ramping method in the thesis effectively reduces the incidence of particles colliding with obstacles or creating erroneous gaps around the obstacles, while significantly alleviating the artifacts the original ramping strategy produces.

Description

Keywords

unified, mixed-dimensional, non-manifold, pointwise divergence-free, vector potential, stream function

LC Subject Headings

Computer animation, Computer graphics, Computational fluid dynamics, Liquids--Computer simulation

Citation