On Capacity-Achieving Input Distributions to Additive Vector Gaussian Noise Channels Under Peak and Even Moment Constraints

Loading...
Thumbnail Image

Authors

Eisen, Jonah Sean

Advisor

Mazumdar, Ravi
Mitran, Patrick

Journal Title

Journal ISSN

Volume Title

Publisher

University of Waterloo

Abstract

We investigate the support of the capacity-achieving input distribution to a vector-valued Gaussian noise channel. The input is subject to a radial even-moment constraint and, in some cases, is additionally restricted to a given compact subset of R^n. Unlike much of the prior work in this field, the noise components are permitted to have different variances and the compact input alphabet is not necessarily a ball. Therefore, the problem considered here is not limited to being spherically symmetric, which forces the analysis to be done in n dimensions. In contrast to a commonly held belief, we demonstrate that the n-dimensional (real-analytic) Identity Theorem can be used to obtain results in a multivariate setting. In particular, it is determined that when the even-moment constraint is greater than n, or when the input alphabet is compact, the capacity-achieving distribution’s support has Lebesgue measure 0 and is nowhere dense in R^n. An alternate proof of this result is then given by exploiting the geometry of the zero set of a real-analytic function. Furthermore, this latter approach is used to show that the support is composed of a countable union of submanifolds, each with dimension n − 1 or less. In the compact case, the support is a finite union of submanifolds.

Description

LC Subject Headings

Citation