Show simple item record

dc.contributor.authorSchmid, David
dc.date.accessioned2021-07-07 13:41:33 (GMT)
dc.date.available2021-07-07 13:41:33 (GMT)
dc.date.issued2021-07-07
dc.date.submitted2021-06-28
dc.identifier.urihttp://hdl.handle.net/10012/17136
dc.description.abstractA key aim of quantum foundations is to characterize the sense in which nature goes beyond classical physics. Understanding nonclassicality is one of our best avenues towards finding a satisfactory interpretation of quantum theory. By determining which classical principles cannot be satisfied in any empirically adequate physical theory, we begin to see which principles can be preserved, which in turn gives us insight into the ontology of the world. These insights then guide us in determining which questions to ask and which experiments to perform next. Furthermore, it is these nonclassical aspects of nature that give rise to new technologies such as the speed-ups of quantum computation or the security of quantum key distribution. The gold standard for establishing that a phenomenon is truly nonclassical is to prove that it violates the principle of local causality or the principle of noncontextuality. Much of this thesis reports on my research relating to these two principles. This research primarily involves (i) finding new justifications for our notions of nonclassicality; (ii) refining their fundamental definitions; (iii) quantifying and characterizing their various manifestations; and (iv) finding applications where nonclassical phenomena act as resources for information processing. Ultimately, all of this work on nonclassicality is woven together into a novel framework for physical theories introduced by myself, John Selby, and Rob Spekkens. Its main advantage over preexisting frameworks is that it maintains a clear distinction between which elements of a given physical theory directly describe causal processes, and which refer only to one’s inferences about causal processes. This clarifies a number of confusions in the literature which arose precisely because previous frameworks scrambled causal and inferential concepts. Furthermore, local causality and noncontextuality emerge in this framework as the assumptions that the causal and inferential structures (respectively) that are operationally observed must be respected in the underlying ontology. This work constitutes a first step in developing a new interpretation of quantum theory—the first interpretation designed to satisfy the spirit of both local causality and noncontextuality.en
dc.language.isoenen
dc.publisherUniversity of Waterlooen
dc.subjectquantum foundationsen
dc.subjectquantum interpretationsen
dc.subjectnonlocalityen
dc.subjectcontextualityen
dc.subjectquantum causal modelsen
dc.subjectcausationen
dc.subjectinferenceen
dc.subjectontological modelsen
dc.titleGuiding our interpretation of quantum theory by principles of causation and inferenceen
dc.typeDoctoral Thesisen
dc.pendingfalse
uws-etd.degree.departmentPhysics and Astronomyen
uws-etd.degree.disciplinePhysics (Quantum Information)en
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.degreeDoctor of Philosophyen
uws-etd.embargo.terms0en
uws.contributor.advisorSpekkens, Robert
uws.contributor.advisorResch, Kevin
uws.contributor.affiliation1Faculty of Scienceen
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.typeOfResourceTexten
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages