Show simple item record

dc.contributor.authorGu, Yu 20:36:08 (GMT) 20:36:08 (GMT)
dc.description.abstractIn this thesis, we present a new type of boundary condition for the simulation of inviscid fluids – the Signorini boundary condition. The new condition models the non-sticky contact of a fluid with other fluids or solids. Euler equations with Signorini boundary conditions are analyzed using variational inequalities. We derived the weak form of the PDEs, as well as an equivalent optimization based formulation. We proposed a finite element method to numerically solve the Signorini problems. Our method is based on a staggered grid and a level set representation of the fluid surfaces, which may be plugged into an existing fluid solver. We implemented our algorithm and tested it with some 2D fluid simulations. Our results show that the Signorini boundary cpndition successfully models some interesting contact behavior of fluids, such as the hydrophobic contact and the non-coalescence phenomenon.en
dc.publisherUniversity of Waterlooen
dc.subjectcomputer graphicsen
dc.subjectfluid simulationen
dc.subjectnumerical algorithmen
dc.subjectfinite element methoden
dc.subjectelliptic PDEsen
dc.titleSignorini conditions for inviscid fluidsen
dc.typeMaster Thesisen
dc.pendingfalse R. Cheriton School of Computer Scienceen Scienceen of Waterlooen
uws-etd.degreeMaster of Scienceen
uws.contributor.advisorBatty, Christopher
uws.contributor.affiliation1Faculty of Mathematicsen

Files in this item


This item appears in the following Collection(s)

Show simple item record


University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages