Show simple item record

dc.contributor.authorWen, Boyu
dc.date.accessioned2021-06-01 19:04:30 (GMT)
dc.date.issued2021-06-01
dc.date.submitted2021-05-05
dc.identifier.urihttp://hdl.handle.net/10012/17060
dc.description.abstractTerahertz (THz) quantum cascade lasers (QCLs) are arguably the most promising THz radiation source, as they have high output power and efficiency. The main limitation of THz QCLs is the need of a cooling system due to the below-room-temperature operation. Therefore, achieving room temperature operation with good frequency-tunning ability are essential for many potential applications of THz QCLs. This thesis simulates THz QCLs’ operation, designs and demonstrates the possible THz QCLs with novel quantum designs that have potential to improve the maximum lasing temperature (Tmax) and frequency-tuning ability of THz QCLs. Resonant-phonon (RP) and scattering-assisted (SA) schemes are two widely used THz QCLs quantum schemes that show good temperature performance at different frequency ranges. However, both schemes have limitations, such as the pre-threshold electrical instability in RP designs and thermally activated leakage to continuum in SA designs, which have prevented significant temperature improvements in the last eight years. To overcome those limitations, this thesis develops a six-level hybrid extraction/injection design (HEID) scheme in which the RP and the SA-based injection/extraction are combined within a single Al0.15Ga0.85As/GaAs based structure. By utilizing extra excited states for hybrid extraction/injection channels, this design minimizes the appearance of an intermediate negative differential resistance (NDR) before the lasing threshold. The final negative differential resistance is observed up to 260 K, and a high characteristic temperature of 259 K is measured. These observations imply very effective suppression of pre-threshold electrical instability and thermally activated leakage current. Broadband emission of THz QCL is usually demonstrated at low temperature. One possible way of extending THz QCLs’ frequency coverage involves activating multiple-lasing transit channels in the device active region (AR). This thesis discusses a dual-lasing channel THz QCL both theoretically and experimentally. The dual-lasing channel device combines two optical transitions at different frequencies under different device biases. The device exhibits a low threshold current density of 550 A/cm2 at 50 K and a maximum operating temperature of 144 K. It provides 0.3 THz emission frequency coverage with the lowest reported threshold current density among SA THz QCLs. The combination of a dual-lasing channel operation, low lasing threshold current density, and high-temperature performance makes such devices ideal candidates for broadband emission applications and paves the way for achieving high-temperature-performance THz QCLs with a greater frequency-tuning ability. The thesis also theoretically investigates two further novel designs. One design addresses an issue observed in the first reported HEID structure for Tmax improvement. The second design is a quasi one-well (Q1W) design consisting of the fewest number of layers (three) and lowest thickness per period (~20 nm) of all the THz QCL quantum structures. The Q1W design exhibits sufficient high optical gain in the positive differential resistance (PDR) region up to a lattice temperature above 250 K.en
dc.language.isoenen
dc.publisherUniversity of Waterlooen
dc.subjectoptoelectronic devicesen
dc.subjectTerahertzen
dc.subjectnanotechnologyen
dc.subjectquantum physicsen
dc.titleDevelopment of Terahertz Quantum Cascade Lasers with Novel Quantum Designsen
dc.typeDoctoral Thesisen
dc.pendingfalse
uws-etd.degree.departmentElectrical and Computer Engineeringen
uws-etd.degree.disciplineElectrical and Computer Engineeringen
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.degreeDoctor of Philosophyen
uws-etd.embargo.terms1 yearen
uws.contributor.advisorDayan, Ban
uws.contributor.affiliation1Faculty of Engineeringen
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws-etd.embargo2022-06-01T19:04:30Z
uws.typeOfResourceTexten
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages