Show simple item record

dc.contributor.authorNiknamian, Mohammadali
dc.date.accessioned2021-05-27 18:06:13 (GMT)
dc.date.available2021-05-27 18:06:13 (GMT)
dc.date.issued2021-05-27
dc.date.submitted2021-05-20
dc.identifier.urihttp://hdl.handle.net/10012/17035
dc.description.abstractKnowledge graphs are one of the most important resources of information in many applications such as question answering and social networks. These knowledge graphs however, are often far from complete as there are so many missing properties and links between entities. This greatly affects their usefulness in applications that they are used in. Many methods have been proposed to alleviate this problem. One of the most prominent and studied subjects in this area are the graph embedding and link prediction methods. However, these methods only consider the relations between entities in knowledge graphs and completely ignore their literal values and properties that account for 41% of the facts in the knowledge graph YAGO4. They also do not scale for large knowledge graphs and their inference process for imputing missing links is by nature quadratic with respect to the number of entities in the knowledge graph. Furthermore, the embedding vectors that represent entities and relations might not be able to capture information that is necessary for inference for millions of entities that exist in large-scale knowledge graphs. We present a novel method based on the HoloClean’s framework — a powerful cleaning tool for relational data. Our system is designed based on the open-source HoloClean and can be used to integrate multiple and different signals from various knowledge graph completion methods which allows us to holistically tackle this problem. We have done a thorough experiment on the YAGO4 dataset with 5M entities and 20M facts and we were able to enlarge the knowledge graph by roughly 12% with an average reconstruction precision of 0.81 on 162 different classes.en
dc.language.isoenen
dc.publisherUniversity of Waterlooen
dc.titleKnowledge Graph Imputationen
dc.typeMaster Thesisen
dc.pendingfalse
uws-etd.degree.departmentDavid R. Cheriton School of Computer Scienceen
uws-etd.degree.disciplineComputer Scienceen
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.degreeMaster of Mathematicsen
uws-etd.embargo.terms0en
uws.contributor.advisorIlyas, Ihab
uws.contributor.affiliation1Faculty of Mathematicsen
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.typeOfResourceTexten
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages