Show simple item record

dc.contributor.authorKorkmaz, Mustafa 20:01:02 (GMT) 20:01:02 (GMT)
dc.description.abstractNatural short term fluctuations in the load of transactional data systems present an opportunity for power savings. For example, a system handling 1000 requests per second on average can expect more than 1000 requests in some seconds, fewer in others. By quickly adjusting processing capacity to match such fluctuations, power consumption can be reduced. Many systems do this already, using dynamic voltage and frequency scaling (DVFS) to reduce processor performance and power consumption when the load is low. DVFS is typically controlled by frequency governors in the operating system or by the processor itself. The work presented in this dissertation shows that transactional data systems can manage DVFS more effectively than the underlying operating system. This is because data systems have more information about the workload, and more control over that workload, than is available to the operating system. Our goal is to minimize power consumption while ensuring that transaction requests meet specified latency targets. We present energy-efficient scheduling algorithms and systems that manage CPU power consumption and performance within data systems. These algorithms are workload-aware and can accommodate concurrent workloads with different characteristics and latency budgets. The first technique we present is called POLARIS. It directly manages processor DVFS and controls database transaction scheduling. We show that POLARIS can simultaneously reduce power consumption and reduce missed latency targets, relative to operating-system-based DVFS governors. Second, we present PLASM, an energy-efficient scheduler that generalizes POLARIS to support multi-core, multi-processor systems. PLASM controls the distribution of requests to the processors, and it employs POLARIS to manage power consumption locally at each core. We show that PLASM can save power and reduce missed latency targets compared to generic routing techniques such as round-robin.en
dc.publisherUniversity of Waterlooen
dc.subjectdata systemsen
dc.subjectenergy efficiencyen
dc.titleEnergy-Efficient Transaction Scheduling in Data Systemsen
dc.typeDoctoral Thesisen
dc.pendingfalse R. Cheriton School of Computer Scienceen Scienceen of Waterlooen
uws-etd.degreeDoctor of Philosophyen
uws.contributor.advisorSalem, Kenneth
uws.contributor.affiliation1Faculty of Mathematicsen

Files in this item


This item appears in the following Collection(s)

Show simple item record


University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages