Show simple item record

dc.contributor.authorJiang, Tao 12:19:14 (GMT) 12:19:14 (GMT)
dc.description.abstractSum-of-norms clustering is a method for assigning n points in d-dimensional real space to K clusters, using convex optimization. Recently, Panahi et al. proved that sum-of-norms clustering is guaranteed to recover a mixture of Gaussians under the restriction that the number of samples is not too large. The first contribution of this thesis is to lift this restriction, i.e., show that sum-of-norms clustering can recover a mixture of Gaussians even as the number of samples tends to infinity. Our proof relies on an interesting characterization of clusters computed by sum-of-norms clustering that was developed inside a proof of the agglomeration conjecture by Chiquet et al. Because we believe this theorem has independent interest, we restate and reprove the Chiquet et al. result herein. Multiple algorithms have been proposed to solve the sum-of-norms clustering problem: subgradient descent by Hocking et al., ADMM and ADA by Chi and Lange, stochastic incremental algorithm by Panahi et al. and semismooth Newton-CG augmented Lagrangian method by Sun et al. All algorithms yield approximate solutions, even though an exact solution is demanded to determine the correct cluster assignment. The second contribution of this thesis is to close the gap between the output from existing algorithms and the exact solution to the optimization problem. We present a clustering test which identifies and certifies the correct clustering from an approximate solution yielded by any primal-dual algorithm. The test may not succeed if the approximation is inaccurate. However, we show the correct clustering is guaranteed to be found by a primal-dual path following algorithm after sufficiently many iterations, provided that the model parameter λ avoids a finite number of bad values. Numerical experiments are implemented to support our results.en
dc.publisherUniversity of Waterlooen
dc.relation.urimixture of Gaussiansen
dc.relation.urihalf moonsen
dc.subjectconvex optimizationen
dc.subjectsecond-order cone programmingen
dc.subjectsum-of-norms clusteringen
dc.subjectmixture of Gaussiansen
dc.subjectfinite terminationen
dc.titleSum-of-norms clustering: theoretical guarantee and post-processingen
dc.typeMaster Thesisen
dc.pendingfalse and Optimizationen and Optimizationen of Waterlooen
uws-etd.degreeMaster of Mathematicsen
uws.contributor.advisorVavasis, Stephen
uws.contributor.affiliation1Faculty of Mathematicsen

Files in this item


This item appears in the following Collection(s)

Show simple item record


University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages