Show simple item record

dc.contributor.authorTanko, Zsolt 18:01:07 (GMT) 18:01:07 (GMT)
dc.description.abstractThis thesis studies two disjoint topics involving coefficient spaces and algebras associated to locally compact groups. First, Chapter 3 investigates the connection between amenability and compactness conditions on locally compact groups and the homology of the Fourier algebra when viewed as a completely contractive Banach algebra. We provide characterizations of relative 1-projectivity, 1-flatness, and 1-biflatness of the Fourier algebra. These allow us to deduce a new hereditary property for an amenability condition, namely that inner amenability passes to closed subgroups. Our techniques also allow us to show that inner amenability coincides with Property (W) and to settle a conjecture regarding the cb-multiplier completion of the Fourier algebra. Our second theme is coefficient spaces arising from $L^p$-representations of locally compact groups. Chapter 4 is motivated by a question of Kaliszewski, Landstad, and Quigg regarding whether two coefficient space constructions coincide. We are able to provide a positive answer in special cases, in particular for the group $SL(2,\mathbb{R})$. We establish several results regarding the non-separability of algebras related to the $L^p$-Fourier algebras, and characterize when these algebras have a bounded approximate identity.en
dc.publisherUniversity of Waterlooen
dc.subjectlocally compact groupsen
dc.subjectoperator homologyen
dc.subjectcoefficient spacesen
dc.subjectrelative injectivityen
dc.titleCoefficient spaces arising from locally compact groupsen
dc.typeDoctoral Thesisen
dc.pendingfalse Mathematicsen Mathematicsen of Waterlooen
uws-etd.degreeDoctor of Philosophyen
uws.contributor.advisorForrest, Brian
uws.contributor.advisorKennedy, Matthew
uws.contributor.affiliation1Faculty of Mathematicsen

Files in this item


This item appears in the following Collection(s)

Show simple item record


University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages