Show simple item record

dc.contributor.authorElma, Ertan 17:17:48 (GMT) 17:17:48 (GMT)
dc.description.abstractIn this thesis, we obtain several results in number theory. Let $k\geqslant 1$ be a natural number and $\omega_k(n)$ denote the number of distinct prime factors of a natural number $n$ with multiplicity $k$. We estimate the first and the second moments of the functions $\omega_k$, $k\geqslant 1$. Moreover, we prove that the function $\omega_1(n)$ has normal order $\log\log n$ and the functions $\omega_k(n)$ with $k\geqslant 2$ do not have normal order $F(n)$ for any nondecreasing nonnegative function $F$. Let $\chi$ be a nonprincipal Dirichlet character modulo a prime number $p\geqslant 3$. Define \begin{align*} \mathcal{M}_{p}(-s,\chi)&:=\frac{2}{p-1}\sum_{\substack{\psi \pmod p\\\psi(-1)=-1}}L(1,\psi)L(-s,\chi\overline{\psi}), \\ \mathcal{A}_{p}(\chi)&:=\frac{1}{p-1}\sum_{{\substack{1\leqslant N \leqslant p-1}}}\sum_{\substack{1\leqslant n_1,n_2\leqslant N\\\chi(n_1)=\chi(n_2)}}1, \\\Delta(s,\chi)&:=\sum_{n=2}^{\infty}\frac{\chi(n)\Delta(n)}{n^s}, \quad \quad (\Re(s)>2) \end{align*} where $\Delta(n)$ is the error term in the Prime Number Theorem. We investigate the mean value $\mathcal{M}_{p}(-s,\chi)$ for $\Re(s)>-1$, give an exact formula for the average $\mathcal{A}_{p}(\chi)$ and obtain the meromorphic continuation of the function $\Delta(s,\chi)$ to the region $\Re(s)>1/2$.en
dc.publisherUniversity of Waterlooen
dc.subjectDirichlet L-functionsen
dc.subjecterror term in the Prime Number Theoremen
dc.subjectnumber of prime factorsen
dc.subjectDirichlet charactersen
dc.titleSome Problems in Multiplicative and Additive Number Theoryen
dc.typeDoctoral Thesisen
dc.pendingfalse Mathematicsen Mathematicsen of Waterlooen
uws-etd.degreeDoctor of Philosophyen
uws.contributor.advisorLiu, Yu-Ru
uws.contributor.advisorKuo, Wentang
uws.contributor.affiliation1Faculty of Mathematicsen

Files in this item


This item appears in the following Collection(s)

Show simple item record


University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages