Show simple item record

dc.contributor.authorTofigzade, Natig 17:15:30 (GMT) 17:15:30 (GMT)
dc.description.abstractIn the stable matching problem we are given a bipartite graph G = (A ∪ B, E) where A and B represent disjoint groups of agents, each of whom has ordinal preferences over the members of the opposite group. The goal is to find an assignment of agents in one group to those in the other such that no pair of agents prefer each other to their assignees. In this thesis we study the stable matching problem with ties and incomplete preferences. If agents are allowed to have ties and incomplete preferences, computing a stable matching of maximum cardinality is known to be NP-hard. Furthermore, it is known to be NP-hard to achieve a performance guarantee of 33/29 − ε (≈ 1.1379) and UGC-hard to attain that of 4/3 − ε (≈ 1.3333). We present a polynomial-time approximation algorithm with a performance guarantee of (3L − 2)/(2L − 1) where L is the maximum tie length. Our result matches the known lower bound on the integrality gap for the associated LP formulation.en
dc.publisherUniversity of Waterlooen
dc.subjectCombinatorial Optimizationen
dc.subjectStable Matchingen
dc.subjectAlgorithmic Game Theoryen
dc.titleAn Algorithm for Stable Matching with Approximation up to the Integrality Gapen
dc.typeMaster Thesisen
dc.pendingfalse and Optimizationen and Optimizationen of Waterlooen
uws-etd.degreeMaster of Mathematicsen
uws.contributor.advisorKoenemann, Jochen
uws.contributor.affiliation1Faculty of Mathematicsen

Files in this item


This item appears in the following Collection(s)

Show simple item record


University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages