UWSpace is currently experiencing technical difficulties resulting from its recent migration to a new version of its software. These technical issues are not affecting the submission and browse features of the site. UWaterloo community members may continue submitting items to UWSpace. We apologize for the inconvenience, and are actively working to resolve these technical issues.
 

Training Reject-Classifiers for Out-of-distribution Detection via Explicit Boundary Sample Generation

Loading...
Thumbnail Image

Date

2020-01-24

Authors

Vernekar, Sachin

Journal Title

Journal ISSN

Volume Title

Publisher

University of Waterloo

Abstract

Discriminatively trained neural classifiers can be trusted only when the input data comes from the training distribution (in-distribution). Therefore, detecting out-of-distribution (OOD) samples is very important to avoid classification errors. In the context of OOD detection for image classification, one of the recent approaches proposes training a classifier called “confident-classifier” by minimizing the standard cross-entropy loss on in-distribution samples and minimizing the KL divergence between the predictive distribution of OOD samples in the low-density “boundary” of in-distribution and the uniform distribution (maximizing the entropy of the outputs). Thus, the samples could be detected as OOD if they have low confidence or high entropy. In this work, we analyze this setting both theoretically and experimentally. We also propose a novel algorithm to generate the “boundary” OOD samples to train a classifier with an explicit “reject” class for OOD samples. We show that this approach is effective in reducing high-confident miss-predictions on OOD samples while maintaining the test-error and high-confidence on the in-distribution samples compared to standard training. We compare our approach against several recent classifier-based OOD detectors including the confident-classifiers on MNIST and FashionMNIST datasets. Overall the proposed approach consistently performs better than others across most of the experiments.

Description

Keywords

Out-of-distribution detection, Reject-Classifier, Variational Autoencoder, Manifold

LC Keywords

Machine learning, Neural networks (Computer science)

Citation