Show simple item record

dc.contributor.authorBabaee Cheshmeahmadrezaee, Reza 18:43:37 (GMT) 18:43:37 (GMT)
dc.description.abstractRuntime Verification (RV) is the formal analysis of the execution of a system against some properties at runtime. RV is particularly useful for stochastic systems that have a non-zero probability of failure at runtime. The standard RV assumes constructing a monitor that checks only the currently observed execution of the system against the given properties. This dissertation proposes a framework for predictive RV, where the monitor instead checks the current execution with its finite extensions against some property. The extensions are generated using a prediction model, that is built based on execution samples randomly generated from the system. The thesis statement is that predictive RV for stochastic systems is feasible, effective, and useful. The feasibility is demonstrated by providing a framework, called Prevent, that builds a predictive monitor by using trained prediction models to finitely extend an execution path, and computing the probabilities of the extensions that satisfy or violate the given property. The prediction model is trained using statistical learning techniques from independent and identically distributed samples of system executions. The prediction is the result of a quantitative bounded reachability analysis on the product of the prediction model and the automaton specifying the property. The analysis results are computed offline and stored in a lookup table. At runtime the monitor obtains the state of the system on the prediction model based on the observed execution, directly or by approximation, and uses the lookup table to retrieve the computed probability that the system at the current state will satisfy or violate the given property within some finite number of steps. The effectiveness of Prevent is shown by applying abstraction when constructing the prediction model. The abstraction is on the observation space based on extracting the symmetry relation between symbols that have similar probabilities to satisfy a property. The abstraction may introduce nondeterminism in the final model, which is handled by using a hidden state variable when building the prediction model. We also demonstrate that, under the convergence conditions of the learning algorithms, the prediction results from the abstract models are the same as the concrete models. Finally, the usefulness of Prevent is indicated in real-world applications by showing how it can be applied for predicting rare properties, properties with very low but non-zero probability of satisfaction. More specifically, we adjust the training algorithm that uses the samples generated by importance sampling to generate the prediction models for rare properties without increasing the number of samples and without having a negative impact on the prediction accuracy.en
dc.publisherUniversity of Waterlooen
dc.subjectruntime verificationen
dc.subjectpredictive runtime verificationen
dc.subjectblack box systemen
dc.subjectimportance samplingen
dc.subjectstochastic systemen
dc.subjectprediction modelen
dc.titlePredictive Runtime Verification of Stochastic Systemsen
dc.typeDoctoral Thesisen
dc.pendingfalse and Computer Engineeringen and Computer Engineeringen of Waterlooen
uws-etd.degreeDoctor of Philosophyen
uws.contributor.advisorRayside, Derek
uws.contributor.advisorGanesh, Vijay
uws.contributor.affiliation1Faculty of Engineeringen

Files in this item


This item appears in the following Collection(s)

Show simple item record


University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages