Exploiting Mobile Energy Storages for Overload Mitigation in Smart Grid

Loading...
Thumbnail Image

Date

2019-08-09

Authors

Chen, Nan

Advisor

Shen, Xuemin (Sherman)

Journal Title

Journal ISSN

Volume Title

Publisher

University of Waterloo

Abstract

The advancement of battery and electronic technologies pushes forward transportation electrification, accelerating the commercialization and prevalence of plug-in electric vehicles (PEVs). The development of PEVs is closely related to the smart grid as PEVs are considered as high power rating electric appliances that require frequent charging. As PEVs become regular transportation options, charging stations (CSs) are also extensively deployed in the smart grid to meet the PEV charging demand. During peak traffic hours, the increasing PEV charging demand could exceed the loading capacities of CS-connected transformers, causing heavy charging overload in-station. Without proper overload mitigation, the energy imbalance issues will result in severe feeder degradation and power quality issue. Therefore, solutions for CS overload mitigation are in urgent demand. Considering the rechargeable nature of PEV batteries, PEVs can serve as potential mobile energy storages (MESs) to carry energy from power nodes with excess energy to overloaded CSs to compensate the overloads. Compared to infrastructure upgrade and installing stationary energy storages at CSs, the utilization of PEVs not only minimizes the additional upgrade/installation expenditure, but also maximizes the energy utilization in the smart grid with high flexibility. However, the PEV utilization for overload mitigation is confronted with a variety of challenges due to vehicular mobility and the fear of battery degradation. Because of vehicular mobility, the CS operation dynamics become stochastic processes, increasing the difficulty of the CS demand estimation. Without accurate demand estimation, the overload condition cannot be timely predicted and controlled. Moreover, the stochastic on-road traffic could impair the time-efficiency of the PEV overload mitigation service. Further, as the overload mitigation service demands frequent charging and discharging, the fear of battery degradation could impede PEV owners from providing the service, making the overload mitigation tasks harder to fulfill. In this thesis, we address the above challenges to effectively utilize PEVs for overload mitigation in the smart grid. In specific, different approaches are designed according to the PEV properties at different commercialization stages. First, at the early PEV commercialization stage, power utility company purchases large battery capacity PEVs as utility-owned MESs (UMESs) whose only responsibility is fulfilling the energy compensation task. The fleet of UMESs is rather small due to the company's limited budget, and therefore UMESs priorly serve the CSs with large energy imbalance (e.g., 500-1000kWh). Thus, the stochastic CS charging demand needs to be accurately estimated and then UMESs can be scheduled to these CSs for overload mitigation. To achieve this objective, we develop a two-dimensional Markov Chain model to characterize the stochastic process in-station so that the CS charging demand can be precisely estimated. Based on the estimated CS demand status, a two-tier energy compensation framework is designed to schedule UMESs to the heavily overloaded CSs in a timely and cost-efficient manner. Second, at the medium stage of PEV commercialization, vehicle-fleet based companies are motivated by legislation to purchase a large fleet of PEVs which can be served as potential MESs, referred to as legislation-motivated MESs (LMESs). To deliver energy to overloaded CSs using LMESs would introduce a large amount of additional traffics to the transportation network. When injecting these LMES traffics into an already busy transportation network, unexpected traffic delay could occur, delaying the overload mitigation service. To avoid the potential traffic delay incurred by LMES service, we develop an energy-capacitated transportation network model to measure the road capacity of accommodating additional LMES traffics. Based on the developed model, a loading-optimized navigation scheme is proposed to calculate the optimal navigation routes for LMES overload mitigation. To stimulate LMESs following the optimal navigation, we propose a dynamic pricing scheme that adjusts the service price to align the LMES service routes with the optimal routes to achieve a time-efficient service result. Third, when PEVs are prevalent in the automobile market and become regular transportation options for every household, on-road private-owned PEVs can be efficiently used as energy porters to deliver energy to overloaded CSs, named as private MESs (PMESs). As the primary objective of PMESs is to reach their planned destinations, the monetary incentive is demanded to stimulate them actively participating in the overload mitigation tasks. Therefore, a hierarchical decision-making process between the utility operator (UO) and PMESs is in demand. Moreover, considering PMESs have different service preferences (e.g., the fear of battery degradation, the unwillingness of long service time, etc.), individual PMES decision making process on the task should be carefully modelled. Thus, we propose to characterize the price-service interaction between the operator and PMESs as a Stackelberg game. The operator acts as the leader to post service price to PMESs while PMESs act as followers, responding to the posted price to maximize their utility functions. In summary, the analysis and schemes proposed in this thesis can be adopted by the local power utility company to utilize PEVs for overload mitigation at overloaded power nodes. The proposed schemes are applicable during different PEV commercialization stage and present PEVs as a flexible solution to the smart grid overload issue.

Description

Keywords

electric vehicle, smart grid, resource allocation, mobile energy storage

LC Subject Headings

Citation