Show simple item record

dc.contributor.authorSimidzija, Petar
dc.date.accessioned2019-07-15 20:22:39 (GMT)
dc.date.available2019-07-15 20:22:39 (GMT)
dc.date.issued2019-07-15
dc.date.submitted2019-07-08
dc.identifier.urihttp://hdl.handle.net/10012/14803
dc.description.abstractWe study the ability of qubit detectors to i) extract correlations from, and ii) transmit quantum information through, a quantum field. We start by perturbatively studying the harvesting of correlations from thermal and squeezed coherent field states. We find that an increase in field temperature is detrimental to entanglement harvesting, but beneficial to mutual information harvesting. We also show that entanglement harvesting is independent of the field's coherent amplitude - which we relate to fundamental results regarding the entanglement structure of coherent field states - but strongly dependent on the field's squeezing amplitude. We conclude by analyzing the practical feasibility of entangling qubits using squeezed field states. We then go on to study, non-perturbatively, the entanglement extraction by targets A and B from a quantum source S. After proving a general no-go theorem which applies for any A, B and S, we apply this theorem to the entanglement harvesting setup to prove that a wide class of i) degenerate, or ii) point-in-time coupled, detectors cannot harvest entanglement from any field state. We also discuss the role of communication in the process of entanglement extraction, and we end the chapter by presenting the simplest successful example of a non-perturbative entanglement harvesting protocol. We conclude by studying the ability of flat spacetime observers Alice and Bob to transmit quantum information through a quantum field. We construct a perfect, field-mediated quantum channel, each use of which allows Alice to transmit a full qubit of information to Bob. This construction provides us with an understanding of how quantum information propagates through a relativistic field, which we find to be consistent with our understanding of the strong Huygens principle. Lastly, we analyze the possibility of simultaneously broadcasting a quantum message through a quantum field to multiple receivers, and discover severe fundamental limitations to such a setup.en
dc.language.isoenen
dc.publisherUniversity of Waterlooen
dc.subjectquantum field theoryen
dc.subjectentanglementen
dc.subjectquantum informationen
dc.titleCorrelation and Communication via a Quantum Fielden
dc.typeMaster Thesisen
dc.pendingfalse
uws-etd.degree.departmentApplied Mathematicsen
uws-etd.degree.disciplineApplied Mathematics (Quantum Information)en
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.degreeMaster of Mathematicsen
uws.contributor.advisorMartin-Martinez, Eduardo
uws.contributor.affiliation1Faculty of Mathematicsen
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.typeOfResourceTexten
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages