Show simple item record

dc.contributor.authorMahmoud, Mohammad
dc.date.accessioned2019-06-12 15:45:56 (GMT)
dc.date.available2019-06-12 15:45:56 (GMT)
dc.date.issued2019-06-12
dc.date.submitted2019-06-06
dc.identifier.urihttp://hdl.handle.net/10012/14753
dc.description.abstractIn this thesis, we study notions of complexity related to computable structures. We first study degrees of categoricity for computable tree structures. We show that, for any computable ordinal $\alpha$, there exists a computable tree of rank $\alpha+1$ with strong degree of categoricity ${\bf 0}^{(2\alpha)}$ if $\alpha$ is finite, and with strong degree of categoricity ${\bf 0}^{(2\alpha+1)}$ if $\alpha$ is infinite. For a computable limit ordinal $\alpha$, we show that there is a computable tree of rank $\alpha$ with strong degree of categoricity ${\bf 0}^{(\alpha)}$ (which equals ${\bf 0}^{(2\alpha)}$). In general, it is not the case that every Turing degree is the degree of categoricity of some structure. However, it is known that every degree that is of a computably enumerable (c.e.) set\ in and above $\mathbf{0}^{(\alpha)}$, for $\alpha$ a successor ordinal, is a degree of categoricity. In this thesis, we include joint work with Csima, Deveau and Harrison-Trainor which shows that every degree c.e.\ in and above $\mathbf{0}^{(\alpha)}$, for $\alpha$ a limit ordinal, is a degree of categoricity. We also show that every degree c.e.\ in and above $\mathbf{0}^{(\omega)}$ is the degree of categoricity of a prime model, making progress towards a question of Bazhenov and Marchuk. After that, we study the isomorphism problem for tree structures. It follows from our proofs regarding the degrees of categoricity for these structures that, for every computable ordinal $\alpha>0$, the isomorphism problem for trees of rank $\alpha$ is $\Pi_{2\alpha}$-complete. We also discuss the isomorphism problem for pregeometries in which dependent elements are dense and the closure operator is relatively intrinsically computably enumerable. We show that, if $K$ is a class of such pregeometries, then the isomorphism problem for the class $K$ is $\Pi_3$-hard. Finally, we study the Turing ordinal. We observed that the definition of the Turing ordinal has two parts each of which alone can define a specific ordinal which we call the upper and lower Turing ordinals. The Turing ordinal exists if and only if these two ordinals exist and are equal. We give examples of classes of computable structures such that the upper Turing ordinal is $\beta$ and the lower Turing ordinal is $\alpha$ for all computable ordinals $\alpha<\beta$.en
dc.language.isoenen
dc.publisherUniversity of Waterlooen
dc.titleDegrees of Categoricity and the Isomorphism Problemen
dc.typeDoctoral Thesisen
dc.pendingfalse
uws-etd.degree.departmentPure Mathematicsen
uws-etd.degree.disciplinePure Mathematicsen
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.degreeDoctor of Philosophyen
uws.contributor.advisorCsima, Barbara
uws.contributor.affiliation1Faculty of Mathematicsen
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.typeOfResourceTexten
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages