How Large Immobile Particles Impact Sediment Transport and Bed Morphology in Gravel Bed Rivers
Loading...
Date
2019-05-29
Authors
McKie, Christopher
Advisor
Annable, William
Journal Title
Journal ISSN
Volume Title
Publisher
University of Waterloo
Abstract
Large particles can be deposited in natural stream channels as a result of failed erosion
protection measures or geological deposits. The impacts these large particles have on the
natural systems have been studied, however the previous literature that has been completed
either has a very narrow scope applicable only to alpine rivers or are simplified and do not
fully capture the processes that occur in a natural channel system. Additionally, the results
often contradict each other, and give an unclear understanding of the effects these large
particles have on bed morphology and sediment transport.
This thesis utilizes a laboratory experiment to evaluate the effects that varying densities
of large immobile particles in a gravel-bed channel have on sediment transport and bed
morphology. The objective of this study is to gain further understanding and to consolidate
existing literature to provide a more holistic overview of the effects of these large particles
on a channel bed. It was expected that large immobile particles would cause an increase
in channel roughness, and that the impacts to sediment transport and bed morphology
would reflect this.
The laboratory experiment consisted of 5 test cases with varying densities of large
immobile particles, and one base case with no large particles present. In each case, the
flume bed was composed of a poorly sorted gravel mixture with a bi-modal distribution
of sand and gravel meant to be representative of a natural gravel-bed channel. The large
particles were sized to be representative of common engineering principles by applying a
factor of safety to a minimum stable particle size. Each experimental case consisted of a
single hydrograph with continuous sediment input scaled to the flow rate.
The results of the test cases and the base case proved that relating the large particle
density to an increase in channel roughness was too simplistic to explain the trends found
within this study. At low densities of large immobile particles, the transported material and
the bed material both became coarser. At medium densities of large immobile particles,
the bed material size and erosion reached a maximum, and the system also approached
equal mobility. Finally, at high densities of large immobile particles, the size of transported
material and bed material sizes were similar to that of the base case, and the sediment
transport also had the strongest clockwise hysteresis trend. These results indicate the
difficult of relating large immobile particle density to channel roughness to explain the
effects on sediment transport and bed morphology.
In an effort to provide a more holistic explanation, and to consolidate the existing lit-
erature, a more complex explanation was developed using the findings of previous research
and relating it to the results found within this study. This complex model is made up of
3 main points:
1. Isolated large immobile particles create localized areas of increased erosive forces,
and localized protected areas (Brayshaw et al., 1983).
2. At a narrow range of large immobile particle spacings, flow structures build upon
each other and amplify their erosive forces (Tan and Curran, 2012).
3. Densely spaced large immobile particles causes high energy skimming flow that is
able to create powerful eddies in gaps between the large particles (Hassan and Reid,
1990).
This complex model explains the trends and results found within this study. Addi-
tionally, the results of this research were used to form the framework for predicting or
understanding the impacts to a natural channel system caused by the introduction of large
immobile material. Finally, the results of this study can be used to further research and
develop design criteria for engineered in-channel structures to remedy imbalanced channel
processes.
Description
Keywords
sediment transport, bed morphology, gravel-bed, keystone