Show simple item record

dc.contributor.authorDippel, Jack 18:15:21 (GMT) 18:15:21 (GMT)
dc.description.abstractWe present a 7/4 approximation algorithm for the matching augmentation problem (MAP): given a multi-graph with edges of cost either zero or one such that the edges of cost zero form a matching, find a 2-edge connected spanning subgraph (2-ECSS) of minimum cost. We first present a series of approximation guarantee preserving reductions, each of which can be performed in polytime. Performing these reductions gives us a restricted collection of MAP instances. We present a 7/4 approximation algorithm for this restricted set of MAP instances. The algorithm starts with a subgraph which is a min-cost 2-edge cover, contracts its blocks, adds paths to the subgraph to cover all its bridges, and finally adds cycles to the subgraph to connect all its components. We contract any blocks created throughout. The algorithm ends when the subgraph is a single vertex, and we output all the edges we’ve contracted which form a 2ECSS.en
dc.publisherUniversity of Waterlooen
dc.subjectmatching augmentation problemen
dc.subjectapproximation algorithmen
dc.titleThe Matching Augmentation Problem: A 7/4-Approximation Algorithmen
dc.typeMaster Thesisen
dc.pendingfalse and Optimizationen and Optimizationen of Waterlooen
uws-etd.degreeMaster of Mathematicsen
uws.contributor.advisorCheriyan, Joseph
uws.contributor.affiliation1Faculty of Mathematicsen

Files in this item


This item appears in the following Collection(s)

Show simple item record


University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages