UWSpace is currently experiencing technical difficulties resulting from its recent migration to a new version of its software. These technical issues are not affecting the submission and browse features of the site. UWaterloo community members may continue submitting items to UWSpace. We apologize for the inconvenience, and are actively working to resolve these technical issues.
 

Probing Ising Superconductivity and Light-Induced Phase Transitions in Two-Dimensional Transition Metal Dichalcogenides

Loading...
Thumbnail Image

Date

2019-04-23

Authors

Dekker, Tina Elayne

Journal Title

Journal ISSN

Volume Title

Publisher

University of Waterloo

Abstract

2H-NbSe2 is a superconducting transition metal dichalcogenide that retains its superconductivity in its two-dimensional (2D) form. Owing to strong spin orbit coupling, 2D 2H-NbSe2 demonstrates unconventional superconductivity that allows both spin-singlet and spin-triplet Cooper pairing. There is experimental and theoretical evidence that 2D 2H-NbSe2 is an Ising superconductor. However, a direct measurement of its Ising nature has not yet been proven. In this thesis, I present the results of measurements on a 2H-NbSe2 superconducting spin filter tunnel junction fabricated with mechanically exfoliated 2D flakes. Using this device geometry, it may be possible to elucidate the pairing nature in 2H-NbSe2. Intense ultrashort laser pulses can photo-excite non-equilibrium states in materials leading to transient new phases and exotic states. In bulk materials these photo-excited states are short-lived. 1T′-MoTe2 in bulk form undergoes a reversible transition at ~250 K from the monoclinic phase (1T′-MoTe2) to the inversion-symmetry breaking, orthorhombic phase (Td-MoTe2). Td-MoTe2 is a candidate type II Weyl semimetal that is predicted to demonstrate exotic quantum phenomena. These phases in 2D MoTe2 flakes are characterized using ultrafast optical-pump probe techniques. The results indicate a permanent photo-induced structural change occurs in thin Td-MoTe2 at high fluences. Given the durability of this structural change, further characterization of the sample is achieved using magnetotransport measurements.

Description

Keywords

LC Keywords

Citation