Show simple item record

dc.contributor.authorWu, Kaiyu 19:53:54 (GMT) 19:53:54 (GMT)
dc.description.abstractWe study the problem of approximate shortest path queries in chordal graphs and give a n log n + o(n log n) bit data structure to answer the approximate distance query to within an additive constant of 1 in O(1) time. We study the problem of succinctly storing a static chordal graph to answer adjacency, degree, neighbourhood and shortest path queries. Let G be a chordal graph with n vertices. We design a data structure using the information theoretic minimal n^2/4 + o(n^2) bits of space to support the queries: whether two vertices u,v are adjacent in time f(n) for any f(n) \in \omega(1). the degree of a vertex in O(1) time. the vertices adjacent to u in O(f(n)^2) time per neighbour the length of the shortest path from u to v in O(n f(n)) timeen
dc.publisherUniversity of Waterlooen
dc.titleSuccinct Data Structures for Chordal Graphsen
dc.typeMaster Thesisen
dc.pendingfalse R. Cheriton School of Computer Scienceen Scienceen of Waterlooen
uws-etd.degreeMaster of Mathematicsen
uws.contributor.advisorMunro, J. Ian
uws.contributor.affiliation1Faculty of Mathematicsen

Files in this item


This item appears in the following Collection(s)

Show simple item record


University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages