The Libraries will be performing routine maintenance on UWSpace on July 15th-16th, 2025. UWSpace will be available, though users may experience service lags during this time. We recommend all users avoid submitting new items to UWSpace until maintenance is completed.
 

On the Extrema of Functions in the Takagi Class

Loading...
Thumbnail Image

Date

2019-01-23

Authors

Han, Xiyue

Advisor

Schied, Alexander

Journal Title

Journal ISSN

Volume Title

Publisher

University of Waterloo

Abstract

The Takagi class is a class of fractal functions on the unit interval generalizing the celebrated Takagi function. In this thesis, we study the extrema of these functions. This is a problem that goes back to J.-P. Kahane (1959). In this thesis, we state and prove the following new and original results on this long-standing problem. We characterize the set of all extrema of a given function in the Takagi class by means of a “step condition” on their binary expansions. This step condition allows us to compute the extrema and their locations for a large class of explicit examples and to deduce a number of qualitative properties of the sets of extreme points. Particularly strong results are obtained for functions in the so-called exponential Takagi class. We show that the exponential Takagi function with parameter 𝜐∈(0,1) has exactly two maximizers if 2𝜐 is not the root of a Littlewood polynomial. On the other hand, we show that there exist Littlewood polynomials such that, if 2𝜐 is a corresponding root in (0,1), the set of maximizers is a Cantor-type set with Hausdorff dimension 1/n, where n is the degree of the polynomial. Furthermore, if 𝜐 is in (-1,-0,5), the location of the maximum is a nontrivial step function with countably many jumps. Finally, we showed that, if 𝜐 is in (-1,-0.8), the minima will only attain at t = 0.2 and t = 0.8. If 𝜐 is in (-0.8,1), the only minimizer is at t = 0.5.

Description

Keywords

nowhere differentiable function

LC Subject Headings

Citation