Show simple item record

dc.contributor.authorLidbetter, Thomas 19:47:52 (GMT) 19:47:52 (GMT)
dc.description.abstractIn this thesis we consider two mostly disjoint topics in formal language theory that both involve the study and use of regular languages. The first topic lies in the intersection of automata theory and additive number theory. We introduce a method of producing results in additive number theory, relying on theorem-proving software and an approximation technique. As an example of the method, we prove that every natural number greater than 25 can be written as the sum of at most 3 natural numbers whose canonical base-2 representations have an equal number of 0's and 1's. We prove analogous results about similarly defined sets using the automata theory approach, but also give proofs using more "traditional" approaches. The second topic is the study languages defined by criteria involving the number of occurrences of a particular pair of words within other words. That is, we consider languages of words z defined with respect to words x, y where z has the same number of occurrences (resp., fewer occurrences), (resp., fewer occurrences or the same number of occurrences) of x as a subword of z and y as a subword of z. We give a necessary and sufficient condition on when such languages are regular, and show how to check this condition efficiently. We conclude by briefly considering ideas tying the two topics together.en
dc.publisherUniversity of Waterlooen
dc.subjectautomata theoryen
dc.subjectregular languagesen
dc.subjectadditive number theoryen
dc.titleCounting, Adding, and Regular Languagesen
dc.typeMaster Thesisen
dc.pendingfalse R. Cheriton School of Computer Scienceen Scienceen of Waterlooen
uws-etd.degreeMaster of Mathematicsen
uws.contributor.advisorShallit, Jeffrey
uws.contributor.affiliation1Faculty of Mathematicsen

Files in this item


This item appears in the following Collection(s)

Show simple item record


University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages